1 Trigger-disabling Acquisition System for Quantum Key Distribution failsafe against Self-blinding M. Bawaj1, M. Lucamarini1, R. Natali1, G. Di Giuseppe1,2, and P. Tombesi1,2 1 School of Science and Technology, Physics Division, University of Camerino, I-62032 Camerino (MC), Italy 2 CriptoCam S.r.l., via Madonna delle Carceri 9, I-62032 Camerino (MC), Italy January 30, 2012 2 1 Abstract—Modernsingle-photondetectorsbasedonavalanche e.g. 800 nm. If the dark count rate is high, as it happens 0 photodiodes offer increasingly higher triggering speeds, thus in the infrared domain, e.g. at wavelengths of 1550 nm, 2 fostering their use in several fields, prominently in the recent then the SPAD is usually run in “gated mode”, where the n area of Quantum Key Distribution. It is well known that after bias voltage is raised above the breakdown voltage only for a a detection event these detectors loose their single photons J sensitivity for a period of time generically called dead time. If a short period of time (the gate), when the photon to be the acquisition system connected to the detector is not properly detected is expected to arrive. This requires that the SPAD 7 2 designed, and the triggering function not properly controlled, is well synchronized with the light source and the rest of efficiencyissuescanarisewhenthetriggeringrateisfasterthan the acquisition system. Another important point to consider theinverseofdetector’sdead-time.Moreover,whenthishappens ] is that the dark count rate can be increased by a non zero h with two or more detectors used in coincidence, a security risk p called “self-blinding” can jeopardize the distribution of a secret afterpulse probability: a detection event is given in the SPAD - quantum key. byanavalancheofelectriccharges,someofwhichcanremain nt Inthispaperweintroduceatrigger-disablingcircuitrybasedon trapped in the junction and can be released in the following anFPGA-drivenfeedbackloop,sotoavoidtheabove-mentioned a gates,thusgivingrisetoadditionalcountsnotcorrespondingto u inconveniences. In the regime of single-photon-attenuated light, thearrivalofnewphotons.Toreducetheafterpulseprobability, q theelectronicsdynamicallyacceptatriggeronlyafterdetectors’ [ complete recovery from dead-time. This technique proves useful an afterpulse blocking electronics [13] is usually added to to work with detectors at their maximum speed and to increase the SPAD with the aim of “freezing” it after the emission 2 the security of a quantum key distribution setup. of an avalanche, for a time interval decided in advance by the v Index Terms—Single-photon detector, quantum key distribu- operator. For example, one of the most popular single-photon 5 tion, quantum hacking, detector blinding, detector dead-time, detectorinthethirdTelecomwindow,theid201fromIDQ[7], 6 5 high-speed detection, quantum efficiency. featuresanafterpulseprobabilitygoingtonearlyzeroinabout 5 4 µs. [14]. This entails that, in order to minimize dark counts, 0. I. INTRODUCTION a blocking time of at least 10 µs should be applied to this 1 IN ORDER to detect a light signal attenuated at the detector. During the blocking time, the detector is not capable 1 to detect single photons anymore. Hereafter, we generically single-photonlevel[1],theSingle-PhotonAvalancheDiode 1 define “dead time” any interval of time in which the SPAD : (SPAD) is of widespread use. SPADs have been employed to v looses its single-photon sensitivity. This can be due either detect stars feeble light [2], to perform a sharp optical time- i to the natural response of the detector or to the afterpulse X domain reflectometry [3] and in the vast majority of Quantum blocking circuit. Moreover, we focus on a SPAD run in gated r KeyDistribution(QKD)realizationsreportedthusfar[4],[5], a mode,suitableforworkinginahigh-noiseregime,leavingthe [6],bothinopticalfibresandinfreespace.Inparticular,fibre- free-running mode analysis for a future work. based QKD at the wavelength of 1550 nm, is an emerging In order to use a gated-mode SPAD, it is necessary to technology which promises a high security level in telecom- prepare an acquisition system capable of sending a trigger to munications while retaining quite a high transmission rate. In it, read its output in a synchronized way and write the result thiswavelengthrange,theSPADfeaturesquantumefficiencies into a memory location. However, during the preparation of up to 25% [7] and trigger rates of more than 1 GHz [8], [9], such a system, we realized that a few problems arise when [10], [11], [12]. the triggering rate of the acquisition system is higher than the LetusbrieflydescribesomeparticularaspectsoftheSPAD. inverse of detector’s dead-time. This situation is much more First, in order to increase the detector’s gain, the detector is widespread than commonly believed. In fact, the acquisition operated in the so called “Geiger mode”, where a reverse systemisusuallymuchfasterthantheSPADanditstriggering bias voltage higher than the detector’s breakdown voltage ratecoincideswiththemaximumrateallowedbythedetector. is applied. If, despite the high gain, the dark count rate is For instance, the same id201 mentioned above, accepts a low, the SPAD can be operated in “free running” mode; this maximum trigger rate of 8 MHz, which is much higher than usually happens at wavelengths close to the visible range, the 100 KHz corresponding to the inverse of the dead-time Correspondingauthoremail:[email protected]. value given above, i.e. 10 µs. 2 One problem related to a SPAD running at its maximum COMP trigger rate and with a non-zero dead-time, is the readout. CMP VALUE A If the acquisition system tries to read the SPAD during the COUNTER EQ dead-time period it only collects a sequence of futile counts '1' FFD Q B D Q CE whichdonotcorrespondtotruedetectionevents.Theremoval C of these counts by a postprocessing algorithm is simple but DETECTOR C CLR CLR very inefficient, time- and memory-consuming. A second, more important, problem is that when two or more SPADs CE are present in the same detection apparatus, one detector CLOCK SOURCE CLOCK OUTPUT can be active while the other is blind. This happens, e.g., CLK BUF when one of the two detectors registers a photon and enters MEMORY the dead-time period while the other does not register any DATA photon and remains active. This situation can be exploited C to control the detectors of the receiving unit, as described in [15]. Furthermore, in a wholly passive way, this flaw can Fig. 1. Conceptual scheme of clock manager. FFD - D flip-flop latch, be exploited to threaten the security of the QKD technology, COUNTER-binarycounter,COMP-binarycomparator,CLKBUF-clock by making the key distilled by the users not perfectly random buffer, MEMORY - cache memory for storing detection results. For clarity theschemedoesnotincludetimecorrelations.Tosynchronizerecordingtime and not entirely secret, as we shall show. anddetectioneventadditionalelementsarerequired. We group these security breaches under the name of “self- blinding”,becausetheyarecausedmainlybyanimproperuse of the equipment by the legitimate users. Thetrigger-disablingcircuithasamainconstrainti.e.there- In this paper we describe an acquisition system that allows sponsetime-intervalτ thatgoesfromtheSPADavalanche resp for a proper triggering of single-photon detectors. We use an totheCLKBUFmustbesmallerthantheinverseofthetrigger FPGA-basedelectronicstodisablenotonlythetriggerdriving rate ω : trig the SPAD gates but also the one driving the readout and the 1 τ < . (1) write up of the data to the memory. Hence useless data are resp ω trig no more registered by the acquisition system; the memory is better organized and the postprocessing procedures require a If this condition is not fulfilled, the trigger pulses continue shorter time. Moreover the triggering technique can be easily to arrive at the detector until the clock buffer succeeds in extended to two or more detectors, so to avoid self-blinding. disabling the trigger. This would result in maximal frequency Thepaperisorganizedasfollows.InSectionIIwedescribe limitation or in one or more futile zeroes registration by the our technique and apply it to a single SPAD. In Section III QKD apparatus’s cache memory. we consider the situation with a pair of SPADs and describe Several factors contribute to the total response time the security risks connected to self-blinding. In Section IV of the feedback loop: the detector response (28 ns for we apply our technique to a real setup and demonstrate its id200/id201 [7], which are the SPADs used in our setup), the effectiveness. Section V is left for concluding remarks. length of cables (8 ns) and circuit inside FPGA (2 ns). This sets a maximum limit for the trigger-disabling technique with our current electronics at 26 MHz, which is much above the II. REAL-TIMEDISABLINGOFTHETRIGGER maximal trigger rate for id201. Shortening the total response The trigger-disabling acquisition system is schematically time would increase the maximal frequency of the circuit. shown in Figure 1. The main element of the circuit is the However, among the above delays, only the one caused by clock buffer (CLK BUF) with clock enable CE input (bottom cables can be decreased easily without changing any other part of the figure). Its specifications are given in [17]. This piece of hardware. buffer drives the clock output which in turn is connected In order to demonstrate the circuit working, we applied to the detector’s trigger input and memory clock input. In our electronics to a real setup, composed by a laser source normal regime, the D flip-flop (FFD) is reset; the output is (PicoQuant LDH-P-1550) triggered at 4 MHz, an optical inverted and then fed into the clock buffer so the trigger attenuator,whichfixestheaveragephotonnumberatµ 0.1, (cid:39) clock is simply transferred from the input to the output and and a SPAD id201 set at 2.5 ns gate and 10% efficiency. then to the detector. When a positive detection occurs, the In this configuration, we analyzed the percentage of cache rising edge of the SPAD’s avalanche drives the change in the memoryoccupiedbyusefultriggersoveratotaldurationof12 FFD output, thus disabling the main clock and enabling the hours[18].TheresultsareplottedinFig.2.Iftrigger-disabling COUNTER. The SPAD and the MEMORY will not see any is applied, the cache memory is occupied by useful data only, trigger in this state. The FFD remains in this state until it entailing that all the triggers sent to the SPAD have been is reset. The asynchronous reset occurs after a given number effectivelyusedforameaningfulacquisition.Byconsequence, of main clock cycles, depending on the COUNTER and the thetrigger-percentagepercachereachesthemaximum,100%. binarycomparator(COMP)levelindicatedasCMPVALUEin On the contrary, if the disabling technique is not applied, the Fig. 1. All the circuitry is realized in an FPGA board (Xilinx total amount of useful counts per cache varies according to SP605). the photon emission probability and detector dead-time. In 3 %] 100 III. PAIRWISEDETECTIONANDSELF-BLINDING e [ ag 97 mory us 94 fruTithfuelltyecimhnpilqeumeendteesdcrwibheednitnwothoerpmreovreioSusPAsDecstiaorne ucasendbaet e m 91 e the same time, for instance in experiments where coincidence h of cac 88 detection is important, or in QKD implementations, where ge 85 eachdetectorisassignedwithalogicalvalueofonebit,‘0’or a Percent 82 t‘h1e’,baintsdwwiiltlhcaonmsteitaustuer,eamfteenrtabacslaiss,siZcalordiXsti.llTathieonsepqruoecnecdeuroef, 0 100 200 300 400 500 600 700 800 900 the secret quantum key used for secure telecommunications. Data samples For the moment we consider a practical setup with only Fig. 2. Number of useful triggers per data sample. The lower solid curve twodetectors,whichwecallrespectivelyD0 andD1,assigned showspercentageofusefultriggersincacheincaseofastandardtriggering withthevalue‘0’or‘1’ofthekeybit.Suchadescriptionwell technique.Itlaysaroundapercentagevalueof81%.Whentrigger-disabling adapts to what routinely happens in QKD implementations technique is applied all the triggers are useful, thus reaching a percentage of 100% (upper solid line). The dotted line is a theoretical prediction when when, e.g., the BB84 protocol [4] is performed with an active µ = 0.1 and η = 0.1, providing a percentage of 83.4%. Nine hundred choice of the basis (see e.g. [19] and [20]). In this case it is samplesweretakenin12hours[18]. crucialforsecuritythatbothdetectorsareactiveorinactiveat the same time. If one detector is active and the other one is blind, e.g. during the dead-time following a positive detection particular, a lower percentage corresponds to a situation with event, then a security risk comes about [15]. morecountsbytheSPAD,i.e.toahigherintensityarrivingat In the standard scenario of QKD there are two main the detector. In fact, the more counts at the SPAD, the higher users, traditionally called Alice (the transmitter) and Bob (the the number of futile zeroes present in the cache memory. Any receiver), who try to communicate privately over an insecure futilezero mustbe removedfrom thecachewhich causesthat quantum channel, plus one eavesdropper, Eve, who aims to the percentage of useful triggers remains significantly lower steal information from the channel. Eve can use any means than 100%. There are two ways of removal, either by post- allowedbythelawsofphysicstoreachhergoal.Shecanalso processing or by disabling the trigger before it arrives to the exploitanimperfectionofthesetuptoherownadvantage.For SPAD. In any case the post-processing consumes more time example in [15] it is described how to exploit the detectors’ than a hardware solution [18]. dead-time to hack a particular QKD setup when the detectors Further performance analysis shows that the amount of are used in free-running mode. The same technique, which is removed triggers from cache depends on the product of the a variant of the “faked-state attack” [21], can be adapted to average photon number µ and detector quantum efficiency η. hack also a setup based on gated-mode detectors, if a narrow In fact, the probability of a positive detection per each light temporal selection inside the gate is effected by the users to pulse is given by P = 1 exp( µη). Each time a pulse is − − furthercleantheirquantumsignal[15].Thistechnique,though detected, we have 1 useful trigger and M useless triggers, very powerful, requires an active intervention by Eve, who which fall inside the detector’s dead time. These triggers have has to carefully design her light pulses and synchronize them to be removed, either by post-processing or by disabling the with those transmitted by Alice to Bob. Furthermore, it is not trigger before it arrives to the SPAD. In any case, given N effective against a QKD setup based on gated-mode detectors total triggers arriving at the measuring setup and k positive in which there is no temporal selection inside the gate. In detections, the percentage of useful triggers is given by: that case, the eavesdropping described in [15] would cause an abnormal number of double counts, easily detectable by the N kM Puseful = −N . (2) legitimate users. In the following, we restrict our attention to such a kind The average number of positive detection k is found through of QKD setup, using gated-mode SPADs with no temporal a numerical simulation. The result is directly substituted in filter inside the gate. We describe a totally passive action Eq. (2) to find the average percentage P as function of µ by Eve which is sufficient to create a security risk for the useful and η. The parameters of the simulation were the following: communication. Our aim is not to provide an attack which µ = 0.1, η = 0.1, M = 20, N = 8192, resulting in gives Eve 100% of the information sent by Alice; we only k 68 and P 83.4. This last value has been used in want to show that some extra bit could possibly be captured useful (cid:39) (cid:39) Fig.2toplotthedottedcurvecorrespondingtothetheoretical by Eve without the legitimate users being aware of that. model. The number of useful triggers per block of cache Let us focus then on the typical situation of self-blinding: memory fluctuates in time. Short-term fluctuations are caused at Bob’s side one detector is active while the other one is by detector’s random behavior while long-term fluctuation blind. This can happen in a QKD setup with a trigger rate are caused by an imperfect photon source whose intensity higher than the inverse of detector’s dead-time, which we fluctuates. The trigger-disabling technique makes the amount define here as τ . After the whole quantum communication is d of useful triggers per block of cache memory independent of completed, Bob announces on a public channel the addresses thesefactors,asshowedinFig.2,becauseonlyusefultriggers corresponding to his non-vacuum counts; all the remaining are present in that case. addresses are associated to vacuum counts and are discarded 4 by the users. Eve will register all the counts announced by not known to Eve at all. But this solves only the second flaw, Bob, in particular those which correspond to qubits distant not the first, i.e., the bits of the final key would still be not in time less than τ . All these bits will be necessarily anti- purelyrandom.Oursolutionisbasedonhardware.Wesimply d correlated. In fact, suppose that at a certain time t(cid:48) detector apply the trigger-disabling technique to guarantee that Bob’s D fires and Bob registers a ‘0’. If a second event occurs at detectors are both active or both inactive at the same time. 0 timet(cid:48)(cid:48) with t(cid:48)(cid:48) t(cid:48) <τd,itmustcomenecessarilyfromD1, In the next Section we describe how this can be put into | − | because D0 is in its dead-time period. So Bob will see a ‘1’. practiceandpresenttheexperimentalresultsobtainedwiththis Ifanother countoccursattime t(cid:48)(cid:48)(cid:48) with t(cid:48)(cid:48)(cid:48) t(cid:48)(cid:48) <τd itmust technique. | − | necessarilybea‘0’,andsoon.Thenetresultwillbethatwith asmall,butnon-zero,probabilitytherewillbeinthefinalkey IV. EXPERIMENTALPAIRWISEDETECTIONWITH groupsofbitswhichareanti-correlated(e.g.1010101...)rather TRIGGER-DISABLING thanperfectlyrandom.Thisisalreadyasecuritybreachinthe theory of QKD. In fact, the two requisites for unconditional Inordertodisablethetriggeringclockincaseofapairwise secure communication are (i) that the final key should be detectorconfigurationweusedamodifiedversionofthecircuit random and (ii) that it should be known only to the legitimate shown in Fig. 1. We connected both detectors outputs to the users [22]. So the first requisite here is violated. clock input port C of FFD through an OR gate, and fed Now we want to show that also the second requisite of their trigger input with the same signal coming from CLOCK security can be violated by the passive strategy described OUTPUT. above, i.e. some bits of the final key can be learned by Eve To show the effectiveness of the trigger-disabling technique without Alice and Bob being aware of that. In fact, after the we applied the electronics to a real setup composed by two addresses of the non-vacuum counts have been announced, SPADs, one id201, as before, and one id200. Both detectors the standard description of QKD [5] prescribes that Alice and are triggered at 4 MHz. We notice that the id201 detector Bob proceed with two classical procedures known as Error is one of the receiving units in the “All-Vienna” QKD sys- Correction (EC) [23] and Privacy Amplification (PA) [24]. tem [28], used in two recent quantum networks [29], [30]. EC aims at correcting potential errors (i.e. different bits) in According to what reported in Ref. [28], the system’s average the users’ final keys. During this procedures a few bits are trigger rate was of 415 KHz. Hence Eq. (3) entails that self- revealed on public by the users to localize and finally correct blindingbecomesimportantforthatsetupifadead-timelonger theerrors.Eventuallythewrongbitsandtheirpositionswillbe than 2.4 µs is used. On the other side, the id200 detector was known to Eve too. With PA, the users are supposed to reduce used in the QKD system described in [20], and in the setup Eve’s knowledge about these bits to nearly zero. However it for the asymmetric feedback adopted in [31]. In Ref. [20] the can happen that some of these bits fall into a group which triggerratewas2.5MHzandthedead-time10µs,sotheself- containsanti-correlatedbits,e.g.10101.Inthatcaseitisplain blinding could have had an influence in that case. However, that Eve will immediately know all the members of the group it should be noted that the QKD protocol used was not the as soon as she knows a single bit of the group. Hence the PA BB84 but rather the LM05 [32], in which the two detectors will erase Eve’s knowledge about the single bit revealed, but are not directly associated to the logical bit value. Hence the not her knowledge about the remaining bits. above analysis is not directly applicable to this case. Theattackjustdescribedisentirelypassive,asitistheresult In the present paper’s experiment we studied two figures of of a bad setup configuration by the users. For this reason we theapparatus,i.e.,thefrequencyofcoincidencecountsandthe calleditself-blinding.Asalreadymentioned,self-blindingcan randomnessofthefinalkey.Inbothcasesweemployedalight occur when detector’s dead-time is higher than the inverse of with intensity higher than the single-photon level, to simulate the trigger rate: the detectors’ response under the Eve attack described above. 1 τ > . (3) Inthepreviousexperimentthevalueofµwasabout0.1.Now d ωtrigger it is µ 4. (cid:39) The truer this inequality, the easier the self-blinding mecha- In order to see the frequency of coincidence counts, we nism.Itisworthnotingthattheaboveself-blindingcondition, collected more than 107 events. We registered 13.5% of coin- Eq. (3), is easy to fulfill, so it could represent a common cidenceswithtriggerdisablingONandonly3.0%withtrigger mistakewhenusingtheSPADs.Thereasonisthatoneusually disabling OFF. This confirms that our technique reduces the sets the electronics for a long dead-time, to reduce the after- probability of a self-blinding, because the two detectors are pulses, and at the same time for a high trigger speed, to always operational together. Notice that the coincidence rate increase the final transmission rate. is not 100% even when trigger disabling is ON, because the One solution against self-blinding is to slow down the light is not intense enough. A much more intense light would triggering rate of the QKD apparatus, until Eq. (3) is no cause 100% coincidence counts if the trigger disabling is ON, moresatisfied,butthisdramaticallyreducesthetotalefficiency but could also damage the very sensitive SPAD. of the system. Another possibility is to remove all the bits On a second step we monitored the randomness of the featuring a temporal distance less than τ by post-processing, strings obtained from detectors when trigger disabling was d but this can be very time-consuming. Also, one could resort either ON or OFF. Specifically we assigned a click from toalternativedescriptionsofQKD[25],[26]inwhichthebits detector D (D ) and no click from detector D (D ) with 0 1 1 0 for EC are encrypted, so the positions of the errors will be the value ‘0’ (‘1’), and collected all the values so to form JOURNALOFQUANTUMELECTRONICSCLASSFILES,VOL.6,NO.1,JUNE2011 7 ◦•◦◦•◦◦◦◦◦•••◦•◦◦•◦•◦•◦•◦◦•◦◦•◦•◦◦•◦•◦◦•◦•◦◦•◦◦•◦• •◦••◦◦••◦◦•◦•◦•◦•◦•◦◦◦•••◦◦•◦•◦•◦◦•◦•◦•◦•◦•◦•◦•◦ ◦•◦•◦◦◦•◦•◦◦•◦•◦•◦•◦•◦•◦◦••◦•◦••◦••◦•◦••◦•◦•◦•◦•◦• •◦••◦•◦◦•◦•◦•◦•◦•◦•◦•◦•◦•◦•◦◦••◦•◦◦••◦•◦••◦•◦•◦• ◦◦•◦◦•◦•◦•◦•◦•◦•◦•◦•◦••◦◦•◦•••◦•◦•◦•◦•◦◦••◦•◦•◦•◦• ◦••◦•◦•◦•◦••◦•◦•◦•◦•◦•◦•◦•◦•◦•◦•◦•◦•◦•◦••◦••◦•◦◦ ◦◦•◦•◦◦•◦••◦◦••◦•◦•◦•◦•◦•◦•◦•◦•◦•◦•◦◦◦•◦•◦◦••◦◦•◦• •◦••◦•◦•◦•◦•◦•◦◦•◦•••◦•◦◦•◦•◦••◦•◦•◦•◦◦•◦•◦•◦•◦• 5 ◦•◦••◦•••◦•◦◦•◦••◦•◦•◦•◦••◦•◦•◦•◦•◦•◦•◦•◦◦◦•◦•◦◦•◦ ◦•◦•◦•◦•◦•••◦◦•◦•◦••◦•◦••◦◦•◦•◦•◦•◦•◦•◦•◦◦••◦•◦• •◦•◦•◦••◦◦◦◦•◦•◦•◦•◦•◦•◦•◦••◦•◦•◦•◦•◦••◦◦•◦•◦••◦•◦ ◦•◦•◦◦◦•◦•◦••◦•◦•◦•◦◦•◦•◦•◦•◦•◦◦•◦•◦•◦◦•◦••◦••◦• two stri•n•g◦•s◦,•o◦◦n•e◦•c•o◦•rr◦e•s◦p•◦o•n•d◦•in◦•g◦•t◦o•◦O◦•N◦◦◦a•n◦d•◦•o◦n◦e•◦t◦o•◦O•◦F•F. Two V. CONCLUSION •◦•◦◦◦•◦•◦◦•◦•◦◦◦•◦◦•◦•◦•◦•◦◦◦••◦◦•◦••◦•◦◦•◦•◦•◦•◦ APPENDIXC short se•q◦•u◦e•n•c◦◦e•s◦•e•x◦t◦r•a•c•t◦e◦d◦◦◦fr•o◦•m◦•◦s•u◦c◦h•◦•s◦t•ri•n◦g•◦s•◦a◦r•e◦•r•e◦p◦•orted inDETECTWIONePiAnTtTrEoRdNu2ceWdITHaOFUTPCGOAIN-CdIrDiEvNeCnEStechnique to run a single- Fig. 3;◦t•h◦e•◦e•m◦•p◦•ty◦•◦(•fi◦l•l◦e•d◦)••c◦i•r◦c•l◦e•s◦•c◦o◦r•r•e◦s•p◦o•◦n•d◦◦t•o•◦t•h◦e•◦◦v•alue ‘0’ photonavalanchediodeatitsmaximumtriggerrate,regardless ◦•◦•◦•◦•◦◦•◦••◦•◦•◦◦•◦•◦◦•◦••◦◦◦•◦•◦••◦•◦◦•◦•◦•◦•◦ ◦◦◦◦•◦••◦◦••◦•◦◦◦◦◦•◦•◦••••••◦◦•••••••••••◦•◦◦ •◦•◦•◦◦••◦••◦•◦••◦•◦•◦•◦◦◦•◦•◦•◦•◦•◦•◦•◦•◦•◦◦•◦•◦• •◦◦◦◦••◦•o◦f•◦d◦e•a•d•◦-t◦i◦m••e◦•li◦m••i◦t◦a•t•io◦•n•.•W◦••h◦i◦le••i◦n◦•s◦t◦a◦n◦d•a◦rdsituationssomecare ◦••◦•◦•◦•◦•◦•◦••••◦•◦•◦•◦•◦•••◦••◦◦•◦◦•◦◦••◦•◦•◦•◦ ◦•••◦◦••◦s◦h•o••u•l•d◦•b•e••p◦a◦i•d◦•w◦•h◦e◦n•◦t◦h◦◦e•t◦r◦i•g•g◦e•r•◦r•a•t•e◦◦i•s◦higherthan theinverse ◦•◦•◦•◦••◦•◦◦◦•◦•◦•◦•◦•◦•••◦◦•◦◦•◦•◦•◦•◦•◦•◦•◦•◦•◦ ••◦•◦•◦◦•◦•◦•◦◦•◦••••••◦◦◦••◦◦◦◦••◦◦◦•••◦••◦◦••◦◦◦ JOURNALOFQUANTUMELECTRONICSCLASSFILES,VOL.6,NO.1,JUNE2011•◦•◦◦•◦•◦•◦•◦◦•◦•◦•◦••◦•◦◦•◦•◦•◦•◦•◦•◦•◦•◦•◦•◦•◦•◦7 ◦•••◦•◦◦◦o•f◦•d◦e◦a◦d••-◦ti•m•◦e•,◦•w•i•t•h••o•u•◦r•t•e◦c◦h◦n••iq•◦u◦e•◦t•h◦i◦s•h◦◦indranceisremovedby •◦•◦•◦•◦••◦•◦•◦•◦◦•◦•◦◦◦•◦••◦•◦•◦••◦◦•◦•◦•◦•◦•◦•◦◦ ◦◦◦◦••••◦a◦•t•r◦ig◦◦g•e•r◦-•d•i•s•a◦b•l•i•n◦g◦•l◦o◦o◦◦p◦◦w◦•h◦i•c•h◦◦◦s◦to◦◦p◦s•◦t•he trigger to and from •◦•◦••◦•◦•◦•◦•◦•◦•◦•◦•◦◦•◦•◦•◦••◦•◦•◦◦••◦•◦◦◦••◦•◦ ••◦•◦◦••◦t•h◦e◦•S◦P◦◦A•◦D◦◦u•◦n•t•il•◦i◦t◦•h◦a•s◦•p◦r•o◦p••e•r◦ly◦••r•e◦c◦o•v◦e•r◦ed from the dead-time ◦•◦◦•◦◦◦◦◦•••◦•◦◦•◦•◦•◦•◦◦•◦◦•◦•◦◦•◦•◦◦•◦•◦◦•◦◦•◦• •◦••◦◦••◦◦•◦•◦•◦•◦•◦◦◦•••◦◦•◦•◦•◦◦•◦•◦•◦•◦•◦•◦•◦ ◦•◦•◦◦◦•◦•◦◦•◦•◦•◦•◦•◦•◦◦••◦•◦••◦••◦•◦••◦•◦•◦•◦•◦• ••◦◦••◦••◦◦••◦◦◦•••◦◦••◦◦••◦◦••◦••◦◦••◦◦••◦◦◦•◦•◦◦••◦◦••◦◦◦••◦••◦••◦◦◦◦••◦••◦◦•◦◦••◦•◦◦◦••◦◦••◦◦•• ◦•◦◦•◦◦••p•e•r•i•o•d•◦.◦T◦•h◦e••p◦r•e•s•e•n◦•te•◦d◦◦c•i◦rc••u•i◦t◦c◦a◦n◦◦•a◦ls◦o••◦serve as a simple dead- ◦•◦•◦•◦•◦•◦•◦•◦•◦•◦•◦•◦•◦••◦•◦•◦•◦•◦•◦•◦•◦•◦••◦•◦• •••••◦•◦◦•◦••••◦••◦◦◦◦•◦◦◦•••◦◦•◦•••◦••••◦◦◦◦•••◦◦ ◦◦•◦◦•◦•◦•◦•◦•◦•◦•◦•◦••◦◦•◦•••◦•◦•◦•◦•◦◦••◦•◦•◦•◦• ◦••◦•◦•◦•◦••◦•◦•◦•◦•◦•◦•◦•◦•◦•◦•◦•◦•◦•◦••◦••◦•◦◦ timegeneratorforsingle-photondetectorswhichareproduced ◦•◦•◦•◦•◦•◦•◦•◦•◦•◦••◦◦•◦•◦◦◦•◦•◦•◦•◦•◦•◦•◦•◦•◦••◦ ••◦◦••◦•••••••••◦◦◦•◦◦◦◦◦•◦•••◦◦◦◦◦◦◦◦◦•◦◦•◦••◦◦◦◦ ◦◦•◦•◦◦•◦••◦◦••◦•◦•◦•◦•◦•◦•◦•◦•◦•◦•◦◦◦•◦•◦◦••◦◦•◦• ••◦••◦••◦◦◦•◦◦••◦◦••◦◦••◦◦◦••◦◦◦••◦◦◦•••◦••◦••◦•◦◦◦••◦◦••◦◦••◦••◦◦••◦◦••◦◦•◦◦•◦◦••◦••◦◦◦••◦◦••◦◦◦• •••◦◦◦◦••w◦•i•th•◦o◦u•t◦•th••e•i◦r•o◦•w••n•◦g◦e◦n•e◦•ra•◦to••r.•◦••••◦◦◦•◦◦ ◦•◦••◦•••◦•◦◦•◦••◦•◦•◦•◦••◦•◦•◦•◦•◦•◦•◦•◦◦◦•◦•◦◦•◦ ◦•◦•◦•◦•◦•••◦◦•◦•◦••◦•◦••◦◦•◦•◦•◦•◦•◦•◦•◦◦••◦•◦• •◦•◦◦◦••◦◦•◦•◦•◦•◦•◦•◦•◦◦•◦•◦◦•◦•◦••◦•◦••◦•◦•◦◦•◦• •◦•◦◦◦◦◦••••B•e•c◦◦a◦u•s•e◦•o◦f◦◦th◦•e•a•◦b◦s•e•n◦c•e•◦o◦•f◦a•n•◦y◦f◦u◦•ti◦l◦e◦•counts,ourtechniqueis •◦•◦•◦••◦◦◦◦•◦•◦•◦•◦•◦•◦•◦••◦•◦•◦•◦•◦••◦◦•◦•◦••◦•◦ ◦•◦•◦◦◦•◦•◦••◦•◦•◦•◦◦•◦•◦•◦•◦•◦◦•◦•◦•◦◦•◦••◦••◦• ◦◦•◦••◦•◦•••◦•◦•◦◦•◦•◦•◦•◦◦••◦•◦•◦••◦◦◦•◦•◦◦◦•◦•◦• •◦•◦◦◦•◦◦◦◦••◦◦•◦◦••••••◦◦••◦◦•◦••••◦••◦•◦◦••◦•◦•• ••◦•◦•◦◦•◦••◦•◦•◦•◦••◦•◦•◦•◦•◦◦•◦◦◦•◦•◦•◦◦•◦◦•◦•◦• especiallyusefulincaseofimplementationinembeddedQKD ◦•◦•◦•◦•◦•◦•◦•◦•◦•◦••◦•◦◦•◦•◦•◦••◦•◦◦••◦•◦◦•◦•◦•◦◦ ◦◦◦◦•◦•◦◦◦••◦◦•◦••••◦◦◦•◦••◦◦•◦◦•◦◦◦◦•◦••◦•◦•◦◦◦•◦ •◦•◦◦◦•◦•◦◦•◦•◦◦◦•◦◦•◦•◦•◦•◦◦◦••◦◦•◦••◦•◦◦•◦•◦•◦•◦ •◦•◦•◦•◦•◦•◦•◦•◦•◦•◦A•◦P•P◦E•N◦D◦I•X•◦C◦••◦•◦•◦•◦•◦•◦•◦•◦◦• •◦•◦••••◦s◦y•s◦t◦e◦m◦◦s••a◦s•◦◦in◦•◦th•◦is◦••c◦a◦s•e◦•o◦n◦•e◦◦n•e◦◦e•d•s◦•t◦o••record a huge amount •◦•◦••◦◦•◦••◦◦•••◦◦◦◦◦•◦•◦•◦•◦◦•◦•◦••◦•◦•◦◦•◦••◦◦• ◦◦••◦D•E◦T•E◦C•◦T•IO◦•N◦P◦A•T•T•E◦R◦◦N•2•◦W••IT◦H•◦O•U◦T•◦C•O◦I◦N◦C•I•D◦E◦N•C•E◦S•◦•◦◦ ◦•••◦••••o◦f◦•r◦e•s◦u◦l•t◦s•◦in◦◦◦a•◦li•m••i◦t•e•d◦•l◦o◦c◦a•l•◦m•◦e•m◦•o•r•y◦.••M◦ oreover the technique ◦•◦•◦•◦•◦•◦•◦•◦•◦•◦••◦•◦•◦•◦•◦◦••◦•◦•◦•◦◦••◦•◦•◦◦• •◦••◦••••◦••◦•◦•◦••◦••◦•◦◦•◦•◦•••◦•◦••◦•◦•◦•◦•◦•◦• ••◦••••◦••◦••••◦••◦◦◦◦◦•◦◦•◦•◦◦•◦◦•◦◦◦•◦•◦◦•••◦◦•• ◦•◦•◦•◦•◦◦•◦••◦•◦•◦◦•◦•◦◦•◦••◦◦◦•◦•◦••◦•◦◦•◦•◦•◦•◦ ◦◦◦◦•◦••◦◦••◦•◦◦◦◦◦•◦•◦••••••◦◦•••••••••••◦•◦◦ allows to remove completely the post-processing related to ◦•◦•◦◦•◦•◦◦••◦•◦◦•◦•◦•◦•◦•◦◦•◦◦•◦•◦•◦•◦•◦•◦•◦•◦••◦ ◦•◦◦◦•◦••◦◦◦◦•◦•◦••◦•◦••◦•◦◦•◦•••◦•••◦◦◦••••◦◦◦◦•• •◦•◦•◦◦••◦••◦•◦••◦•◦•◦•◦◦◦•◦•◦•◦•◦•◦•◦•◦•◦•◦◦•◦•◦• ••◦◦◦•◦◦◦••◦••◦◦••◦◦••◦•◦◦•◦•••◦◦•◦◦◦••◦••◦◦••◦◦••◦••◦◦◦••◦••◦••◦•◦••◦••◦••◦◦◦◦••••◦◦◦••◦◦•◦◦◦◦◦••◦◦ ◦◦••◦••◦•f◦u◦t◦i•le◦◦◦z•e◦r•o•e◦s•••d◦i•s◦c◦a◦r◦d•i•n•g◦,•◦w◦•h◦◦a◦t◦◦r•e•s•u•l◦t◦s•in shorter acquisition ◦••◦•◦•◦•◦•◦•◦••••◦•◦•◦•◦•◦•••◦••◦◦•◦◦•◦◦••◦•◦•◦•◦ ◦•••◦◦••◦◦•••••◦••••◦◦•◦•◦•◦◦•◦◦◦◦•◦◦••◦••◦•••◦◦•◦ •◦••◦◦•◦••◦•◦•◦•◦•◦•◦••◦••◦•◦•◦•◦◦•◦•••◦◦•◦•◦•◦◦•◦ ◦◦••◦◦•◦•t•im◦◦e••.•••◦◦◦◦••◦•◦◦•◦••◦•◦◦••◦•◦◦•◦•◦◦••◦◦ ◦•◦•◦•◦••◦•◦◦◦•◦•◦•◦•◦•◦•••◦◦•◦◦•◦•◦•◦•◦•◦•◦•◦•◦•◦ •••◦◦••◦◦••◦◦•◦◦••◦◦••◦◦••◦◦◦•••◦◦•••◦•◦••◦•◦••◦◦◦•◦◦•••◦◦•◦◦◦•◦••◦•◦◦•◦◦◦••◦•••◦◦••◦••◦◦◦◦•••◦◦•◦◦◦ ••••◦•◦◦••◦◦••◦◦•◦•••◦◦◦•◦◦◦•••••◦◦••◦•◦•◦◦•◦•◦•◦◦ •◦•◦◦•◦•◦•◦•◦◦•◦•◦•◦••◦•◦◦•◦•◦•◦•◦•◦•◦•◦•◦•◦•◦•◦•◦ ◦••◦•••◦◦••◦◦◦◦•◦••◦◦◦••◦◦◦•◦◦•••◦◦••◦••◦◦◦••◦◦•••◦•••◦•••◦•••◦◦••◦•◦◦◦◦•◦◦••••••◦•◦◦•◦◦••◦◦•◦••◦◦•◦ ◦◦•••◦◦••◦••W◦◦e•◦p•◦ro◦•v•i◦d◦e◦d••◦a•n•◦◦e◦x◦p◦e•r•i◦m◦•e◦n•t•a•l••e•v◦◦id◦•ence of our technique •◦•◦•◦•◦••◦•◦•◦•◦◦•◦•◦◦◦•◦••◦•◦•◦••◦◦•◦•◦•◦•◦•◦•◦◦ ◦◦◦•◦◦◦◦•••◦••••◦◦◦••••◦◦•◦◦◦••◦••◦◦•••◦••◦••◦◦•••◦••◦•◦◦••◦•◦◦◦•◦◦◦•◦◦◦••◦◦••◦••◦◦◦•◦◦◦•◦◦◦•◦◦•◦◦•• ◦◦••◦••••a•p◦p••li•e◦d◦◦t◦o••a◦◦s◦i•n◦g•l◦e◦◦S•◦P•A••D•◦,•b•y◦•r◦e◦p◦◦o◦r•t◦in◦◦g◦the trigger distribution •◦•◦••◦•◦•◦•◦•◦•◦•◦•◦•◦◦•◦•◦•◦••◦•◦•◦◦••◦•◦◦◦••◦•◦ •◦••◦◦••◦◦◦••◦••◦◦••◦◦◦••◦◦•◦◦◦◦•◦◦•◦•◦◦••◦◦••◦•••◦◦◦◦•◦••◦◦••◦◦••◦◦••◦◦◦•••◦••◦◦◦••••◦••◦◦◦••◦◦••◦◦ •◦◦••◦•◦•i•n••t•h•e•◦a•◦c◦q◦u◦i◦s•i•t•io◦•n◦◦s•y◦s•t•e•m••’•s•◦c◦a◦c◦•h◦e•◦m◦•e◦m◦ ory. Additionally, we •◦•◦•◦•◦••◦•◦•◦••◦•◦•◦◦◦•◦•◦•◦•◦••◦◦•◦•◦◦•◦◦◦•◦•◦• ◦◦••◦◦◦•••◦◦◦◦•◦•◦•••◦•••◦••••◦◦◦◦◦••◦◦•◦•••◦◦••◦•◦•◦••◦◦•••◦◦•◦•◦◦•◦◦••◦•••◦◦•◦•◦◦◦•◦◦◦••◦◦•◦••◦••◦ •••◦◦◦◦•••◦◦•◦◦•◦◦•◦••◦•◦••◦◦◦•◦••••◦◦•◦◦◦•◦◦◦◦◦•◦ adapted the acquisition system to a pair of detectors used in ◦•◦•◦•◦•◦•◦•◦•◦•◦•◦•◦•◦•◦••◦•◦•◦•◦•◦•◦•◦•◦•◦••◦•◦• •◦•••◦•••◦◦••◦◦◦◦••◦◦••◦•◦•••◦◦••••◦◦•◦◦•◦◦◦••◦◦•◦◦◦••••◦••◦◦◦••◦◦••••◦••◦◦•◦•••••◦◦•◦◦◦◦◦••◦•◦••◦◦◦ ◦◦◦••••◦••◦◦◦•◦•••◦••••••◦◦◦◦•◦••◦•••◦•◦◦◦◦◦•◦◦••• ◦•◦•◦•◦•◦•◦•◦•◦•◦•◦••◦◦•◦•◦◦◦•◦•◦•◦•◦•◦•◦•◦•◦•◦••◦ •••◦◦•◦◦••••◦◦•••◦•••◦•••◦•••◦••◦◦◦•◦◦•◦•◦◦◦•◦◦◦•◦••◦◦••◦•••◦◦•◦◦◦•◦◦◦◦◦◦◦◦◦•◦◦••◦◦◦••◦◦••◦••◦◦◦◦◦•◦ ••◦••◦•◦◦c◦o◦i◦n◦c•◦id•◦e•n◦c•e◦•◦a◦n◦d•◦f•o◦◦u◦n◦d•◦•a◦n◦◦e•v••id◦•e•n◦t◦◦a◦d••vantage of the trigger- ••◦•◦◦◦•◦•◦•◦◦•◦•◦◦•◦••◦•◦•◦•◦•◦•◦•◦•◦◦•◦••◦◦•◦•◦◦ •◦•••◦◦•◦◦◦◦◦••◦••◦◦•••◦••◦◦◦••◦◦••◦•◦••◦••◦◦••◦◦•••••◦••◦◦◦•◦◦••◦◦•••◦◦••◦•◦••◦••••◦•◦••◦◦◦•◦◦••◦◦◦ ◦•◦••◦◦••d◦i•s•a•b◦l•i•n◦g•◦◦te••c◦h•n•i•q•u◦◦e•◦o◦v••e◦r•◦a◦••s◦ta•n◦•d◦a◦r•d◦◦•trigger usage in terms •◦•◦◦◦••◦◦•◦•◦•◦•◦•◦•◦•◦◦•◦•◦◦•◦•◦••◦•◦••◦•◦•◦◦•◦• •◦◦••◦◦◦◦◦◦•◦◦◦••◦•••◦•••••◦◦◦◦•◦◦•••◦◦•◦••◦◦◦◦◦•◦◦••••••◦◦◦••••◦◦••••◦◦•◦◦••◦◦•••◦◦•◦•◦◦◦•••◦◦◦•◦◦• ◦•◦•◦•◦◦•o◦f•••d◦i◦s•tr•i•b•u◦t•i•o•n◦◦◦o◦f◦••th◦◦e•◦c•o◦◦in•◦c◦id••e◦n•c◦e•◦•c•o◦unts and in terms of ◦◦•◦••◦•◦•••◦•◦•◦◦•◦•◦•◦•◦◦••◦•◦•◦••◦◦◦•◦•◦◦◦•◦•◦• •◦◦•••◦◦◦•◦◦••◦◦◦•◦◦◦••◦••◦◦◦••◦◦•◦◦•◦••◦•••◦•••◦◦•◦••◦••◦◦◦•••◦◦•••••◦••◦◦•••◦◦•••◦◦◦••◦••◦◦•◦◦••◦• ••◦◦•••◦◦◦•◦◦◦◦◦◦◦◦◦•◦◦◦•••◦◦•◦◦◦◦◦••••◦◦◦••◦◦••◦• ◦•◦•◦•◦•◦•◦•◦•◦•◦•◦••◦•◦◦•◦•◦•◦••◦•◦◦••◦•◦◦•◦•◦•◦◦ ◦•◦•◦◦◦•••◦◦•◦◦•◦•◦◦••••◦◦◦••◦◦••◦•••◦••◦◦◦◦•◦◦••◦◦•••◦◦◦◦••◦◦•◦◦••◦◦◦•◦•◦◦••◦◦•◦••◦◦••◦◦•◦◦•◦•◦◦••◦ ••◦•◦◦•◦•r◦a•n◦d◦◦o◦m••n◦e•s•s◦◦o◦f••t•h◦e••fi•n◦•a◦l•s•t•r◦i•n◦g◦•d•i◦s◦t•il•l•e◦d••fromdetectors’counts. •◦•◦•◦•◦•◦•◦•◦•◦•◦•◦•◦•◦•◦◦••◦◦••◦•◦•◦•◦•◦•◦•◦•◦◦• •◦◦••◦◦••◦•••••◦◦•◦◦••◦◦◦◦◦•◦◦◦••••◦◦••◦•◦◦◦•◦◦••◦◦••◦◦◦••◦••◦◦◦◦••◦◦••◦◦◦••◦◦•◦◦••◦◦◦◦••••◦◦••◦◦••• •◦•◦•◦◦••M••o◦◦re••o◦v◦e•r•,•i◦t◦•re•◦m◦•o◦v◦e◦s•◦a•t◦•th•◦e◦r◦o◦•o•t◦s•t•h•e•◦p••ossibilityofanexternal ◦•◦◦••••◦◦••◦•••◦••◦◦•••◦◦••◦◦◦••◦••••◦◦◦•◦••◦••◦◦•◦••◦◦••◦◦••◦•••◦◦••◦◦◦•◦••◦••◦◦◦••◦••◦◦Ffi••◦◦irgi••n.◦◦g3◦•.(emS◦•◦•pe•••◦tq•◦◦◦yu•••◦ce◦•◦•in•••◦rc••c◦•el•◦••es••◦◦s◦•◦•o)◦◦•◦fo••◦◦er◦•••vD••◦◦e◦•••n1◦◦◦◦ts••••fi◦•◦◦cri•◦••on◦◦◦◦rgr◦•◦◦e•◦◦◦as••◦◦np◦•••do•◦◦◦nD◦••◦d◦◦••0i••n•◦◦◦◦•ng•◦•◦ot◦••◦to•◦◦•fid◦••◦r••e◦◦int◦◦◦•eg••◦◦c◦◦•◦(tofi•••◦r◦◦◦•ll•••◦De◦•◦•d•◦0•◦c◦◦◦◦ifi••••rrc◦◦••il••••ne••◦◦gs◦◦•◦).a•◦••nT•◦◦•dopD•◦p1◦◦a◦•nn•◦eo•◦l:t•◦••◦•◦•a◦◦t•◦t◦◦a•◦c•◦k◦••◦b◦◦a◦◦s••e••d◦•••o•◦◦•n•◦•◦“◦•s••e◦◦l◦•f◦•-◦•b••l◦◦in◦••◦d••i◦◦n◦•g••”◦•,◦◦••b◦◦e◦•c◦◦a•◦◦•u◦•s◦•eitforcesthedetectors ◦•◦•◦◦•◦•◦◦••◦•◦◦•◦•◦•◦•◦•◦◦•◦◦•◦•◦•◦•◦•◦•◦•◦a•◦s•e•q◦uenc◦•e•◦◦◦o◦•f◦•c•◦l◦e•a•◦r•◦l◦•y◦•n◦◦o◦•n•◦-◦◦r••a◦◦n••d•◦o◦•m◦••◦e◦•v••e◦◦n••ts◦◦,•◦o••b◦◦t••a◦•i•n•◦e◦d••••w◦••◦h•◦e◦n◦••t◦•h••e◦•t•◦r◦◦ig•◦g◦◦e••r◦•-dis•a•b◦li◦n•g•◦◦◦i•n◦•t◦h•e•◦r•e◦c◦e•i•v◦i◦n◦g◦◦u◦◦n•i•t•t◦o◦•b•e••◦a◦c•t◦iv◦e◦◦o◦•r◦•in••active altogether, at the technique was OFF. The alternate occurrence of empty and filled circles is •◦•◦•◦•◦•◦••◦◦•◦•◦•◦•◦•◦•◦•◦•◦••◦◦••◦•◦◦••◦•◦a•p◦p◦a•r◦ent.◦•B◦◦••o•◦tt◦•o•◦m••◦◦p••a◦◦n◦•e◦◦l••:◦◦a◦•◦◦se•◦q◦•u•◦e••n◦◦c••e◦•••o◦◦f••e◦◦v◦◦e•◦n◦◦t••s◦•l◦•o•◦o••k•◦i•◦n◦•g•◦◦l◦i•◦k◦◦e◦◦r••a◦•n••d◦•o•◦m◦◦••,ob•ta•i◦n◦e◦d••◦◦s•a◦m••e•◦t◦i◦m••e◦.•◦◦◦◦••◦◦◦••◦••◦••◦••◦◦◦◦•◦••• •◦••◦◦•◦••◦•◦•◦•◦•◦•◦••◦••◦•◦•◦•◦◦•◦•••◦◦•◦•◦w•◦h◦e•n◦the◦◦t◦•ri•◦g••g◦•e◦◦r•◦-d◦•i•◦s••a◦◦b◦•li•◦n••g•••t◦e••c◦◦h◦◦n◦•i◦◦q••u◦•e•◦i◦•s◦◦O•◦◦•N•◦.◦•T••◦h◦•e•◦◦o•◦c◦•c••u◦◦r••re◦◦n•◦c◦•e•◦◦•o•◦f•◦r◦•e••la◦◦t•◦ively◦•l◦o•n◦g◦•◦•◦••T•h•e◦◦•p◦r◦o•◦p•o◦s•e•d◦•◦t◦e◦c◦h◦◦n◦i•q◦u•e••◦c•a◦n◦◦•b◦◦e◦◦e◦asily implemented in ••◦◦••◦◦••◦◦•◦◦•••◦◦•◦◦••◦◦••◦••◦◦••◦◦◦••◦◦◦◦••◦◦••◦◦••◦◦••◦◦••◦••◦◦◦◦•◦◦••◦◦•••◦•••◦◦•◦◦•st◦◦he••eq◦•ur•◦ae◦•nndceo•◦s◦•m•◦••o-•••◦lf••i••k◦•e◦◦e•◦m•◦◦◦n◦•p◦•a•◦t••ty◦•u•◦••r◦•ae◦◦◦•n••o•◦d•◦f•◦◦•◦•fit◦◦h◦◦l••el••e•◦◦◦sd◦◦t•◦r••••din◦◦••og••◦◦ts.◦◦◦◦T◦◦◦◦to••••hg◦◦◦•ee◦◦◦•et◦••◦vh••◦•ee•◦•◦nr•◦◦•tws•◦•◦•◦◦•wit◦◦•◦hi◦•◦•th•••◦s•◦h••b◦◦o◦◦o••r••tt◦◦h◦◦••s◦•d◦•e◦◦e◦•q••t••ue•◦◦•ce◦•••tno◦◦◦◦cr•••◦es•◦s◦◦fi◦•◦•wriintg••n•◦ehs◦•as◦◦ve•◦es•••◦•◦◦◦m•◦••a•◦n••y◦•◦◦◦◦d◦•i••ff•◦e◦•r◦◦e••n•••◦t◦•s◦◦e◦◦••tu•◦••p◦••◦b•◦y••◦••◦ju◦•◦•s••t◦◦a◦◦d◦◦•◦d•◦i••n◦•g••••a◦••◦piece of electronics in ◦•◦◦•◦••◦••◦•◦•◦•◦•◦•◦•◦•◦••◦••◦•◦•◦•◦•◦•◦•◦•b◦e•e◦n◦•rem◦◦o◦•v•◦e•d•◦•f•◦o••r•◦•e•x•◦p◦•l•◦i•c••a◦t◦i•◦v◦◦e•◦p◦•u••r◦◦p◦◦o•◦s••e◦◦s•.•◦◦F◦◦o◦•r•◦t◦◦h••e•◦m•◦••e◦◦a•s◦•u•◦r◦e••m◦◦◦e•◦n◦◦t•◦w••◦◦e◦◦e•◦m◦◦plo•y◦e•d◦•a•••◦f◦r•o•n◦t◦◦o•f◦•a◦◦s◦t•a◦n•d•◦a•r•d◦•S•P•A◦•D••,•◦t◦h•u•s••m◦•a•k◦•in◦◦g the detector response ◦•◦•◦•◦•◦•◦•◦•◦◦◦••◦•◦•◦•◦◦••◦•◦•◦•◦◦•◦•◦••◦•l◦i•g◦h•t◦with••◦◦a◦•v•◦e•r•a◦◦g••e◦◦••p•◦h••o•◦t•o••n◦•-•n◦◦u••m◦◦◦b•◦e•◦r◦◦•µ•◦•(cid:39)◦•◦◦•◦4◦•.◦◦••◦◦•••◦•••••◦••••◦◦◦•◦◦◦••◦◦•••◦◦◦••◦◦•◦ ◦◦◦•••◦••t•im◦◦e◦◦•a◦s◦◦s•h••o•r◦t••a•s◦◦p◦◦o◦s•s◦i•b•l◦e•.••T••h•i•s••p•a◦v••e◦s the way to a future ◦•◦••◦◦◦◦•◦•◦••◦◦•◦•◦•◦•◦◦◦•◦•◦••◦◦•◦•◦••◦•◦•◦••◦• •◦•◦••◦•◦◦◦•◦◦•••••◦◦◦◦••◦◦•◦◦•◦◦•◦◦••◦◦•◦••◦◦••◦◦•••◦◦◦•◦◦••◦◦•••◦•◦••◦◦◦•••◦◦◦•◦◦••◦•◦◦◦◦◦•◦•••◦ ◦◦◦•◦•◦•••◦◦◦•◦•••••◦◦••••◦•••◦◦••◦◦◦••◦◦◦•◦◦◦••◦• straightforward implementation of this technique in integrated ◦•◦•◦•◦◦•◦•◦◦•◦••◦•◦•◦•◦•◦••◦•◦•◦••◦•◦◦••◦•◦◦•◦◦•◦ ◦◦◦•◦◦•••◦•◦••◦◦•◦••◦◦◦•◦••◦◦••◦•••◦◦••◦•◦•••◦•••◦◦◦•◦◦◦••◦◦••◦•◦◦◦•••◦••◦◦••◦◦◦•◦◦◦•◦◦••◦◦◦••◦••• ◦•••◦•◦◦◦◦•••◦•◦◦◦◦•◦••••◦◦◦◦◦•◦◦◦•◦◦◦◦•◦◦•◦◦•••◦◦ •◦•◦••◦•◦•◦•◦•◦•◦•◦◦•◦•◦••◦•◦•◦•◦•◦◦◦◦•◦•◦•◦•◦•◦◦• •◦••◦◦•◦•◦◦••◦◦•◦◦◦◦◦•◦◦◦•••◦◦••◦◦••◦◦•◦◦••◦◦•◦◦◦◦•◦••◦◦•◦◦◦•◦••◦◦•••◦◦◦•◦◦•••••◦◦◦••••◦◦◦•◦◦◦••◦• ••◦••◦◦••c•o◦m•◦m••e◦•rc◦◦ia•l◦•Q◦◦K◦•D◦◦•a•p•p◦a◦r•a•t•u◦•s•e◦s•.•◦••◦•◦•• ◦•◦•◦◦•◦•◦•◦•◦•◦•◦◦•◦•◦•◦••◦•◦•◦•◦•◦•◦◦•••◦◦•(◦‘•1◦’•)◦. T◦•h•◦e◦••◦d••i◦•f◦f◦•e••r•◦e◦•n•••c•◦e◦•••i•s◦◦••q◦◦u◦◦i••t◦•e•◦◦•a••p••p•◦a◦•r◦◦e•◦n◦•◦◦t.•◦••W◦◦••h◦◦◦e••n◦••◦t◦•r•i◦◦g••g◦◦◦e••r◦◦•◦d◦•isab•◦li◦n•◦g◦◦••◦••◦◦◦◦◦•◦•••◦••◦•••••••••◦◦•◦◦◦•••◦◦◦•◦• ◦•◦◦◦•◦•◦•◦••◦◦•◦•◦•◦•◦◦•◦•••◦••◦••◦•◦•◦•◦••◦••◦•◦ ◦••◦◦◦••◦◦••◦◦◦••◦◦••◦•••◦◦•◦◦•••◦•••◦◦••◦•••◦◦•◦◦◦◦◦◦••◦••◦◦◦••◦◦••◦◦•◦◦•◦◦•◦◦•◦••◦◦••◦••◦◦••◦••◦ ••◦◦••◦◦••◦◦◦•◦◦••◦◦•◦◦•◦•◦◦•••◦◦◦◦◦◦◦◦•◦•◦◦◦•◦••◦ ◦••◦•◦•◦•◦•◦•◦•◦•◦◦•◦•◦•◦••◦•◦••◦••◦•◦•◦••◦•◦i•s◦◦O•◦FF•◦••(◦u•◦◦p••p•◦•e•◦r◦◦•◦s◦•t•r◦◦i◦n•◦◦g◦•◦)◦,◦•◦◦t◦h•◦◦e••◦•◦s◦◦e••q◦•u•◦e◦•◦n◦••c◦•e◦◦◦◦i◦•s◦•••c•◦l••e•◦a◦◦r◦•l◦y••◦••n◦•◦o◦•n••◦◦•r•an•d•o•m◦•,••◦••◦••••◦◦••••◦◦◦•◦◦••◦A◦◦C◦•K•N◦•O◦◦W◦◦L◦E◦D•◦G◦•M•◦E•NT ••◦••◦◦••◦••◦•◦•◦•◦•◦◦•◦•◦•◦◦•◦•◦•◦••◦•◦◦•◦•◦s◦i•n•c◦•e a•◦lm••◦◦o•◦◦•s◦t◦••◦a◦••l◦w◦••a◦◦◦y•◦s◦◦◦••a•◦◦••s◦•i•n◦•◦g◦◦l••e◦•••0◦◦•••◦is••◦••◦f◦o◦••l•l◦o•◦◦w••◦e◦◦◦d••◦•◦b◦•y◦◦•••a◦••◦◦•s◦•ing◦le◦◦•1◦,•◦•◦•◦◦◦◦◦•••◦••◦•◦•◦••◦◦•◦◦◦◦◦◦•••◦◦◦◦◦••◦•◦ ◦•◦•◦••◦•◦•◦◦•◦••◦•◦•◦•◦•◦•◦•◦•◦◦•◦•◦•◦•◦•◦◦••◦•◦• •◦•◦•◦◦••••◦◦••◦◦•••◦◦••◦◦•◦◦◦•◦•◦••◦◦◦◦••◦••••◦•• We thank L. Widmer for his feedback on IDQ detectors and viceversa. On the contrary, when trigger disabling is ON ◦•◦•◦•◦•◦◦•◦•◦•◦•◦•◦◦••◦•◦◦•◦•◦•◦•◦•◦•◦•◦•◦•◦••◦•• •◦◦••••◦◦◦•◦••◦•◦◦••◦••◦••◦•◦◦◦◦•◦◦••◦◦•◦◦•◦◦◦•◦◦◦ and R. Kumar for useful discussions. M.L. is supported by •◦◦◦•◦••◦•◦◦•◦•◦•◦•◦•◦••◦•◦•◦◦•◦••◦•◦•◦••◦◦•◦(•l•o◦w◦◦er ◦s◦e•q◦◦u◦e•n•c•e◦◦),◦◦◦th•◦e◦◦o•c••c•u◦r•r◦e◦n•c•e◦••o•f•◦•a◦•0◦••o•r◦•◦a•◦1◦••i•s much the 5‰ grant C.F. 81001910439. •◦◦••◦•◦◦••◦•◦◦•◦•◦•◦•◦•◦•◦••◦•◦•◦••◦••◦•◦•◦•l◦e•s◦s•◦for•e•s◦e◦e••a◦b◦l◦e•.◦•A◦•ls•o◦•,◦◦th••e◦◦p◦r◦e◦s◦e◦n••c•e◦◦o••f••r◦e◦la•◦ti◦v◦e◦l◦y•◦•lo••ng sub- •◦•◦•◦•◦•◦•◦•◦•◦◦•◦•◦•◦•◦•◦◦•◦•◦◦••••◦•◦•◦◦•◦s•t◦r•i◦n•gs•fi•l◦l◦e◦d••w◦◦i•th◦••a•l◦l◦0◦•’s•◦o•◦r◦◦1◦’•s•,◦i◦s◦•a•n◦•a•◦d•d•i◦t•io•◦n◦a◦l◦•e◦v•i•d•ence of ◦•◦••◦◦•◦•◦•◦••◦•◦◦•◦•◦•◦◦•◦•◦•◦•◦•◦•◦•◦•◦•◦••◦•◦• ◦•◦•◦◦•◦•◦••••◦◦•◦◦•◦•◦••◦•◦◦◦◦◦◦◦•◦•••◦•◦◦◦•◦◦◦◦◦ a random behavior. Note that while non-randomness can be REFERENCES ◦•••◦•◦•◦•◦••◦◦••◦•◦•◦◦•◦◦•◦•◦•◦•◦••◦•◦◦◦••◦◦••◦ ••◦◦••••◦••••◦◦◦◦••◦◦•••◦◦◦•••◦•••◦•◦◦•◦◦◦•••◦••◦• ••◦•◦◦•◦••◦•◦•◦•◦◦•◦•◦◦•◦•◦•◦•◦•◦•◦•◦•◦•◦•◦•e◦a•s◦il•y d•e◦m•◦o◦•n◦s◦t◦r◦a•te◦•d•,◦◦fo••r◦•tr◦u•e•◦•r◦a◦n•d◦o••m◦◦n•e•s◦s••o•f◦◦fi◦◦n◦i•te•••s•e◦quences [1] Hereandthroughoutthepaperthereadercanthinktoasingle-photon- ◦•◦••◦•◦•◦•◦•◦•◦•◦•◦◦••◦•◦◦•◦◦•◦◦•◦◦•◦•◦•◦••is◦◦•n◦ot •t◦h•a◦t••e•a•s◦y◦••s◦i◦n◦c•e◦•◦it◦◦•d◦o•e•s◦••n◦o•t••e◦•x•i•s•t◦◦a••d••e◦c•i•s◦iv•e◦◦test in attenuated light as to a coherent state with mean photon-number µ = •◦•◦•◦•◦•◦•◦•◦•◦•◦••◦•◦◦◦◦•◦•◦•◦••◦••◦•◦•◦••th◦i•s◦•res◦p◦e◦•c•t.•◦N••e•v◦◦e◦r◦th•◦e◦le◦•s•s••w◦•e••p◦◦e◦r◦f◦o•r◦m••e◦d•••th••e••D••I•E◦H••A◦RDER 0.1,astheonecoming,e.g.,fromanattenuatedpulseddiode-laser.This ◦◦••◦•◦••◦◦•◦•◦◦•◦•◦◦•◦•◦•◦•◦•◦•◦◦•◦••◦•◦••◦◦••• ◦◦◦•◦•◦•••◦◦◦•◦•••••◦◦••••◦•••◦◦••◦◦◦••◦◦◦•◦◦◦••◦• isastandardintensityinseveralQKDsystems. ◦•◦•◦◦•◦◦•◦••◦•◦•◦•◦◦•◦•◦•◦•◦•◦◦◦•◦•◦•◦•◦•◦•s◦ta•t◦i•stic◦a•l•t•e◦s•t◦s◦◦[◦3•3•]•◦o•n◦◦o◦u◦•r◦s•t•r•i•n◦g◦s◦,◦◦m•◦o◦s◦t•o◦◦f◦w◦•h◦i◦c•h◦◦w••e•r◦e◦passed [2] F. Zappa, S. Tisa, S. Cova, P. Maccagnani, R. Saletti, R. Roncella, ◦•◦◦◦•◦•◦◦•◦••◦•◦•◦◦•◦•◦◦•◦•◦••◦••◦•◦••◦◦••◦b•y◦•t◦he •O•N◦••s◦t◦r•in••g◦•a◦n•d•◦•n◦o◦n•e◦•w◦◦a◦s•◦p◦•a•s•s◦e◦d••b•y◦••th◦•e•◦O••F◦F•◦s•t•ring. F.Baronti,D.BonacciniCalia,A.Silber,G.BonannoandM.Belluso, •◦•◦••◦••◦••◦••◦•◦◦•◦•◦••◦•◦◦•◦◦•◦•◦•◦•◦•◦•◦•◦•◦ •◦◦•◦◦◦••◦••◦◦◦◦◦•◦•••◦••◦•••••••••◦◦•◦◦◦•••◦◦◦•◦• J.Mod.Opt.54,163(2007). •◦◦•◦•◦•◦•◦•◦•◦•◦•◦•◦•◦•◦◦•◦•◦•◦•◦•◦◦•◦◦•◦••◦•I◦t•co•u•l◦d◦•b•◦e◦•a•r◦g◦u◦•e◦d◦••th◦◦a•t◦◦o•u◦r•◦c◦•h•o•i◦c◦e◦◦µ◦◦◦◦•◦•4◦◦◦is•◦•s•o◦mewhat [3] P. Eraerds, M. Legre, J. Zhang, H. Zbinden, N. Gisin, IEEE J. Light. (cid:39) ◦••◦•◦•◦•◦•◦•◦•◦•◦•◦••◦•◦◦•◦••◦◦•••◦•◦◦••◦••u◦n•u◦s•ual••i•n◦•a••Q◦•K•◦D••s•e•◦tu◦•p•,•w•◦h◦◦e•r◦e◦•o•n◦e◦◦h◦•a•s◦•m◦◦o◦r◦e◦◦o•f◦t◦e•n•◦µ• 0.1. Techn.28,952(2010). ◦•◦◦•◦•◦•◦•◦•◦◦•◦•◦••◦•◦•◦•◦••◦◦•◦◦•◦◦•◦◦•◦•O◦u•◦r◦cho◦◦ic◦e•◦i•s◦•m◦•o◦t◦i◦v◦a◦t•e•d•◦b•y•◦•th◦•e◦•p•u◦r◦p•o◦◦s◦e◦◦o◦f••s•h◦o◦w◦◦i◦n•g•◦c•l◦ea(cid:39)rly in [4] C.H.BennettandG.Brassard,Proc.IEEEInt.Conf.Comp.,Sys.and Sign.Process.,p.175(1984). the experiment the effect of self-blinding. When µ is smaller, [5] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod. Phys. 74, the consequences of self-blinding are smaller too, but they 145(2002). do not disappear as there still remains a non zero probability [6] V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dusek, and N.Lu¨tkenhaus,andM.Peev,Rev.Mod.Phys.81,1301(2009). to find blocks in the final key containing anti-correlated, non [7] www.idquantique.com. random, bits. [8] N.Namekata,S.SasamoriandS.Inoue,Opt.Express14,10043(2006). 6 [9] Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, Appl. Phys.Lett.91,041114(2007). [10] A.R.Dixon,J.F.Dynes,Z.L.Yuan,A.W.Sharpe,A.J.Bennettand A.J.Shields,Appl.Phys.Lett.94,231113(2009). [11] J. Zhang, R. Thew, C. Barreiro and H. Zbinden, Appl. Phys. Lett. 95, 091103(2009). [12] N.Namekata,S.Adachi,andS.Inoue,Opt.Expr.17,6275(2009). [13] V.Makarov,A.Brylevski,andD.R.Hjelme,Appl.Opt.43,4385(2004). [14] Wedirectlymeasuredthisvalueonid200.Asimilarvaluecanbefound inthedatasheetsoftheid220[7]. [15] H.Weier,H.Krauss,M.Rau,M.Fu¨rst,S.Nauerth,andH.Weinfurter, NewJ.Phys.13,073024(2011). [16] V.Makarov,NewJ.Phys.11,065003(2009). [17] Xilinx User Guide, p. 42, Spartan-6 FPGA Clocking Resources, v1.4. Xilinx,2010. [18] In our setup the post-processing was performed on a MicroBlaze architecture and took 99% of the total acquisition time. This means that of 12 hours only about 7 minutes were really necessary for the experiment,theremainingtimebeingdevotedtopost-processing.Even thoughpost-processingcanbecertainlydoneinamoreefficientway,it cannotcompetewiththezerotimeassuredbyourhardwaresolution. [19] C. Gobby, Z. L. Yuan, and A. J. Shields, Appl. Phys. Lett. 84, 3762 (2004). [20] R.Kumar,M.Lucamarini,G.DiGiuseppe,R.Natali,G.Mancini,and P.TombesiPhys.Rev.A77,022304(2008). [21] V.MakarovandD.R.Hjelme,J.Mod.Opt.52,691(2005). [22] C.E.Shannon,BellSyst.Techn.Journ.28,656(1949). [23] G. Brassard and L. Salvail, Lecture Notes in Computer Science, Ad- vancesinCryptology–EUROCRYPT’93765,410(1994). [24] C.H.Bennett,G.Brassard,C.Cre´peau,andU.M.Maurer,IEEETrans. Inf.Th.41,1915(1995). [25] M.Koashi,e-printquant-ph/05051080v1. [26] M.Koashi,J.ofPhys.ConferenceSeries,Vol.36,98(2006). [27] I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, C. Kurtsiefer, and V.Makarov,Nat.Comm.2,349(2011). [28] A. Treiber, A. Poppe, M. Hentschel, D. Ferrini, T. Loru¨nser, E. Querasser, T. Matyus, H. Hu¨bel, and A. Zeilinger, New J. Phys. 11(4),045013(2009). [29] M.Peev,etal.,NewJ.Phys.11(7),075001(2009). [30] M.Sasaki,etal.,Opt.Expr.19,10387(2011). [31] M.Lucamarini,R.Kumar,G.DiGiuseppe,D.Vitali,andP.Tombesi, Phys.Rev.Lett.105,140504(2010). [32] M.LucamariniandS.Mancini,Phys.Rev.Lett.94,140501(2005). [33] A Random Number Test Suite, 2011, URL http://www.phy.duke.edu/~rgb/General/dieharder.php, version 3.31.0 by RobertG.Brown