ebook img

Trends in Colloid and Interface Science X PDF

379 Pages·1996·7.783 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Trends in Colloid and Interface Science X

& Colloid in Progress Polymer Science, Vol. 001 )6991( PROGRESS IN COLLOID & POLYMER SCIENCE Editors: E Kremer (Leipzig) and G. Lagaly (Kiel) e m u l o V 0 0 1 ) 6 9 9 1 ( sdnerT ni diolloC dna X Interface Science Guest Editors: C. Solans, M. R. Infante and M. J. Garc/a-Celma (Barcelona) 9 ~ r e g n i r p S IV ISBN 3-7985-1056-3 This work is subject to copyright. All © 1996 by Dr. Dietrich SteinkopffVedag ISSN 0340-255 X rights are reserved, whether the whole or GmbH & Co. KG, Darmstadt. part of the material is concerned, specifically those rights of translation, Chemistry editor: Dr. Maria Magdalene reprinting, reuse of illustrations, Nabbe; English editor: James C. Willis; Die Deutsche Bibliothek - recitation, broadcasting, reproduction on Production: Holger Frey, B~irbel Flauaus. CIP-Einheitsaufnahme microfilms or in other ways, and storage Type-Setting: Macmillan Ltd., in data banks. Duplication of this Trends in colloid and interface science. publication or parts thereof is only Bangalore, India Darmstadt : Steinkopff ; permitted under the provisions of the - New York : Springer. German CopyrightL aw of September 9, Printing: Druckhaus Beltz, Hemsbach FrUher begrenztes Werk 1965, in its version of June 24, 1985, in verschiedenen Ausg. and a copyright fee must always be paid. Violations fall under the prosecution act 01 (1996) of the German Copyright Law. (Progress in colloid & polymer science ; Vol. 100) The use of registered names, trademarks, ISBN 3-7985-1056-3 etc. in this publication does not imply, NE: GT even in the absence of specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. rgorP diolloC myloP icS )6991( V © ffpoknietS galreV 6991 The IXth European Colloid and Interface Society (ECIS) Conference was held in Barcelona, 71 - 22 September, 1995. It was attended by over 023 partici- pants from 03 different countries. The scientific program was composed of 103 contributions 07( lectures and 132 poster communications). It covered the theoretical, experimental and technical aspects of almost all fields of modern Colloid and Interface Science. This volume contains a selection of the contributions presented at the Confer- ence. It si divided into the following sections: Surfactant aggregates: Micelles, vesicles and liquid crystals - Colloidal particles: Interaction, structure and aggregation - - Emulsions and concentrated systems Microemulsions - - Mixed colloidal systems - Rheology Biocolloids - - Interfaces, films and membranes. On behalf of the Organizing Committee, we would like to thank all partici- pants ftohre ir scientific contributions which resulted in successful a Conference. eW are especially grateful to the members of the Scientific Committee, M. Corti, H. Hoffmann, D. Langevin, H. Lekkerkerker, B. Lindman, M. A. L6pez Quintela, C. Mans, .P Schurtenberger and Th. E Tadros. They helped us in the difficult task of selecting the contributions for oral presentations from a rather large number of high quality Abstracts. We gratefullya cknowledge the support of the Faculty of Chemistry of the University of Barcelona. They kindly allowed us to use their facilities in which to hold the Conference. eW also gratefully acknowledge the financial support from the European Colloid and Interface Society and from the following Spanish Organizations: Generalitat de Catalunya, Ministerio de Educaci6n y Ciencia (MEC), Univer- sitat de Barcelona (UB), Real Sociedad Espafiola de Quimica (RSEQ), Consejo Superior de Investigaciones Cientificas (CSIC), Mettler Toledo S.A.E., Petro- quimicEas pafiola S.A., ICI Espafiola S.A. and Optilas Ib6rica S.A. eW sincerely thank the staff of the "Department de Tecnoiogia de Tensioac- tius" (CSIC) and the "Department d'Enginyeria Quimica i Metallurgia" (UB) for their enthusiastic and efficient collaboration in the organization of the Con- ference. eW are also indebtteod .rM and Mrs. Gurusfwoarm y their valuable and generous help. On behalf of the Organizing Committee, C. Solans, M. R. Infante, M. J. Garcfa-Celma rgorP diolloC Polym icS )6991( IIV © galreVffpoknietS 6991 Surfactant aggregates: Micelles, vesicles and liquid crystals H. Kunieda, K. Shigeta, Formation and structure of reverse vesicles ................... K. Nakamura, T. Imae: H. Edlund, M. Bydrn, Phase diagram of the 1-dodecyl pyridinium bromide-dodecane-water sur- B. Lindstr6m, A. Kahn: factant system ..................................... 6 K. Berger, K. Hiltrop: Characterization of structural transitions in the SLS/n-alcohol/water system .......................................... 9 T. Kato: Surfactant self-diffusion and networks of wormlike micelles in concen- trated solutions on nonionic surfactants ..................... 51 T. Lin, .Y Hu,W.-J. Liu, J. Samseth, Thermodynamic theory and experimental studies on mixed short-chain K. Mortensen: lecithin micelles .................................... 91 .V Babid-Ivan~id, D. Skrtic, Phase behavior in sodium cholate/calcium chloride mixtures . ....... 24 N. Filipovid-Vincekovid: J. R. Chantres, M. A. Elorza, The effect of sub-solubilizing concentrations of sodium deoxycholate on B. Elorza, .P Rodado: the order of acyl chains in dipalmitroylphosphatidylcholine (DPPC). Study of the fluorescence anisotropy of 1,6-diphenyl-l,3-5-hexatriene (DPH) .......................................... 29 D. Te~ak, M. Martinis, S. Pun~ec, Multifractality of lyotropic liquid crystal formation .............. 36 I. Fischer-Pakovir, S. Popovir: .Y A. Shchipunov, E. .V Shumilina: Surfactant aggregation and response of ion-selective electrode ...... 39 R. Bikanga, .P Bault, .P Godr, 3-deoxy-s-alkyl-d-glucose derivative micelle formation, CMC and G. Ronco, .P Villa: thermodynamics .................................... 43 A. K. Van Helden: Computer simulation studies of surfactant systems .............. 48 Colloidal particles: Interaction, structure and aggregation .V Reus, L. Belloni, T. Zemb, Equation of state of a colloidal crystal: An USAXS and osmotic pressure N. Lutterbach, H. Versmold: study ........................................... 54 R. H. Ottewill, A. R. Rennie: Interaction behaviour in a binary mixture of polymer particles ...... 60 .V Peikov, Ts. Radeva, S. .P Stoylov, Electric light scattering from polytetrafluorethylene suspensions. II. In- H. Hoffmann: fluence of dialysis ................................... 64 M. Pailette, S. Brasselet, I. Ledoux, Two photon Rayleigh scattering in micellar and microemulsion systems . 68 J. Zyss: A. Fermindez-Barbero, Dynamic scaling in colloidal fractal aggregation: Influence of particle sur- M. Cabrerizo-Vflchez, face charge density .................................. 73 R. Martinez-Garcia: H. Verduin, J. K. G. Dhont: Effects of shear flow on a critical colloidal dispersion: a light scattering study ........................................... 81 R. M. Santos, J. Forcada: Synthesis and characterization of latex particles witha cetal functionality. 87 B. Gerharz, H. J. Butt, B. Momper: Morphology of heterogenous latex particles investigated by atomic force microscopy ....................................... 91 M. C. Miguel, J. M. Rubfi Dynamic properties of magnetic colloidal particles: Theory and experi- ments ........................................... 96 VIII Contents A. Cebers: Two-dimensional concentration domain patterns in magnetic suspensions: Energetical and kinetic approach ......................... 101 O. Vails, M. L. Garcia, X. Pag6s, Adsorption-desorption process of Sodium Diclofenac in Polyalkylcyano- J. Valero, M. A. Egea, acrylate nanoparticles ................................ 701 M. A. Salgueiro, R. Vails: .P Verbeiren, E Dumont, Determination of the complex refractive index of bulk tellurium and its C. Buess-Herman: use in particle size determination ......................... 211 J. Bonet Avalos, A. N. Semenov, Structure of adsorbed polymer layers: Loops and tails ............ 711 A. Johner, J. E Joanny, C.C . van der Linden: snoislumE dna detaTlnecnoc smetsys J. Miiller, .T Palberg: Probing slow fluctuations in nonergodic systems: Interleaved sampling technique ........................................ 121 E Renth, E. Bartsch, A. Kasper, The effect of the internal architecture of polymer micronetwork colloids .S Kirsch, St61ken, S. H. Sillescu, on the dynamics ihni ghly concentrated dispersions .............. 721 .W K6hler, R. :refi~hcS R. Pons, G. Calder6, M. J. Garcla, Transport properties of W/O highly concentrated emulsions (gel-emul- N. Azemar, I. Carrera, C. Solans: sions) ........................................... 231 J.-L. Salager: Quantifying the concept of physico-chemical formulation in suffactant- oil-water systems - State of the art ........................ 731 G. Marion, K. Benabdeljalil, Interbubble gas transfer in persistent foams resulting from surfactant J. Lachaise: mixtures ......................................... 341 Yu. .V S. Shulepov, .uY Shulepov: Equilibrium states and structure factor of concentrated colloidal disper- sions in optimized random phase approximation ............... 841 A. Kasper, .S Kirsc h, E Renth, Development of core-shell colloids to study self-diffusion in highly con- E. Bartsch, H. Sillescu: centrated dispersions ................................. 151 M. Olteanu, S. Pertz,V. Raicu, Concentrated graphite suspensions in aqueous polymer solutions .... 651 O. Cinteza, .V D. Branda: snoislulneorciM M. Gradzielski, D. Langevin, Experimental investigation of the structure of nonionic microemulsions B.F arago: and their relation to the bending elasticity of the amphiphilic film .... 261 E Bordi, C. Cametti, E Codastefano, Effect of salinity on the electrical conductivity of a water-in-oil micro- E Sciortino, .P Tartaglia, J. Rouch: emulsion ......................................... 071 M. Camardo, M. D'Angelo, Dielectric relaxation of microemulsions ..................... 771 D. Fioretto, G. Onori, L. Palmieri, A. Santucci: M. G. Giri, M. Carla, C. MC.. Gambi, Percolation in fluorinated microemulsions: A dielectric study ....... 281 D. Senatra, A. Chittofrati, A. Sanguineti: .S Amokrane, E Bobola, C. Regnaut: Adhesive spheres mixture model of water-in-oil microemulsions ..... 681 C. V~izquez-V~zquez, J. Mahia, Preparation of 4 Gd2CuO via sol-gel in microemulsions ........... 191 M. A. L6pez-Quintela, J. Mira, J. Rivas: S. M. Andrade, .S MB.. Costa: Fluorescence studies of the drug Piroxicam in reverse micelles AOTo f and mieroemulsions of TritoXn- 100 .......................... 591 Contents IX colloidal Mixed smetsys .V Degiorgio, R. Piazza, G. Di Pietro: Depletion interaction and phase separation in mixtures of colloidal partic- les and nonionic micelles .............................. 201 K. Kostarelos,Th. E Tadros, The effect of monovalent and divalent cations on sterically stabilized E E Luckham: phospholipid vesicles (liposomes) ......................... 206 N. Fauconnier, A. Bee, J. Roger, Adsorption of gluconic and citric acids on maghemite particles in aqueous J. N. Pons: medium ......................................... 212 D. Bastos-Gonz~iles, R. Hidalgo- Influence of heat treatment on the surface properties of functionalized Alvarez, E J. de las Nieves: polymer colloids .................................... 217 N. Stubi6ar, K. Bani6, M. Stubi6ar: Kinetics of crystal growth of a-PbF 2 and micellization of non-ionic surfac- tant Triton X-100 at steady-state condition ................... 221 O. Lopez, A. de la Maza, Selective solubilization of the stratum corneum components using surfac- L. Coderch, J. L. Parra: tants ........................................... 230 .V Sovilj, .P Dokic, M. Sovilj, Influence of surfactant-gelatin interaction on microcapsule characteristics 235 A. Erdeljan: S. vonH tinerbein, M. WOrth, Microscopic mechanisms of non-linear rheology of crystalline colloidal T. Palberg: dispersions ........................................ 241 A. Guerrero, .P Partal, M. Berjano, Linear viscoelasticity of O/W sucrose-palmitate emulsions ......... 246 C. Gallegos: J. Llorens,E . Rud6, C. Mans: Structural models to describe thixotropic behavior .............. 252 J. Castle, A. Farid, L. .V Woodcock: The effect of surface friction on the rheology of hard-sphere colloids . . . 259 A. Cerpa, M. T. Garcia-Gonz~ilez, Rheological properties of concentrated lateritic suspensions ........ 266 E Tartaj, J. Requena, L. R. Garcell, C. J. Serna: sdiollocoiB N. L. Burns, K. Holmberg: Surface charge characterization and protein adsorption at biomaterials surfaces ......................................... 271 R. Bru, J. M. L6pez-Nicolfts, Cyclodextrins as molecular tools to investigate the surface properties of A. S~inchez-Ferrer, potato 5-1ipoxygenase ................................ 276 E Garcia-Carmona: K. Holmberg, S.-G. Oh, J. Kizling: Microemulsions as reaction medium for a substitution reaction ...... 281 S. Avramiotis, A. Xenakis, E Lianos: Lecithin W/O microemulsions as a host for trypsin. Enzyme activity and luminescence decay studies ............................. 286 L. Molina, A. Perani, M.-R. Infante, Synthesis and properties of bioactives urfactants containing/3-1actam ring 290 M.-A. Manresa, M. Maugras, M.-J. St6b6, C. Selve: C. Otero, L. Robledo, M. I. delVal: Two alternatives: Lipase and/or microcapsule engineering to improve the activity and stability of Pseudomonas sp. and Candida rugosa lipases in anionic micelles .................................... 296 .T Hianik, R. Kriv~nek, D. E Sargent, A study of the interaction of adrenocorticotropin-(1-24)-tetracosapeptide L. Sokolikovfi, K. Vinceov~i: with BLM and liposomes .............................. 301 M. De Cuyper: Impact of the surface charge of magnetoproteoliposomes on the enzymatic oxidation of cytochrome c .............................. 306 X Contents films Interfaces, dna senarbmem J. R. Lu, J. A. K. Blondel, D. J. Cooke, The direct measurement of the interfacial composition of surfactant/ R. K. Thomas, J. Penfold: polymer mixed layers at the air-water interface using neutron reflection. 311 R. Miller, .V B. Fainerman, .P Joos: Dynamics of soluble adsorption layer studied by a maximum bubble pressure method in the st~ and ms range of time ................ 316 A. Prins, A. M. .P Jochems, Skin formation on liquid surfaces under non-equilibrium conditions . . . 321 H. K. A. I. van Kalsbeek, J. E G. Boerboom, M. E. Wijnen, A. Williams: N. N. Kochurova, A. I. Rusanov: Dynamic surface properties of aqueous solutions ............... 328 G. B~ihr, .P Grigoriev, M. Mutz, Electric potential differences across lipid mono- and bilayers ....... 330 E. John, M. Winterhalter: .V I. Gordeliy, G.V. Cherezov, Evidence of entropic contribution to "hydration" forces between mem- A. V. Anikin, M. .V Anikin, branes .......................................... 338 .V .V Chupin, J.T eixeira: A. Arbuzova, G. Schwarz: Pore kinetics of mastoparan peptides in large unilamellar liquid vesicles. 345 G. Brezesinski, K. de Meijere, Head-group variations and monolayer structures of diol derivatives . .. 351 E. Scalas, .W G. Bouwman, K. Kjaer, H. M6hwald: I. Porcar, R. M. Garcia, C. M. G6mez, Macromoleculeg in ordered media III. A fluorescence study on the asso- .V Soria, A. Campos: ciation of poly-2-vinylpyridine with a phospholipid bilayer ......... 356 .P Jauregi, J. Varley: Lysozyme separation by colloidal gas aphrons ................. 362 Author Index ....................................... 368 Subject Index ....................................... 370 rgorP diolloC Polym icS )6991( 5-1:001 © ffpoknietS galreV 6991 Formation dna structure H. Kunieda K. Shigeta of reverse vesicles K. Nakamura T. Imae Abstract Both normal and reverse .rD .H Kunieda -)~11( ategihS .K tnemtrapeD fo lacisyhP yrtsimehC vesicles can be formed in the mixture noisiviD of slairetaM ecneicS of sucrose dodecanoates with different dna lacimehC gnireenignE hydrocarbon chain number. The ytlucaF of gnireenignE conditions to produce both types of amahokoY National ytisrevinU iadawikoT ,651 uk-ayagodoH vesicles are discussed using the amahokoY ,042 napaJ geometrical packing model. The .K arumakaN conditions are roughly the same for tnemtrapeD of gniviL ecneicS both types of vesicles. The formation ytlucaF of noitacudE of reverse vesicles is confirmed by atagiiN ytisrevinU ihsaragI ohc-oniN 0508 means of video-enhanced microscopy atagiiN ,12-059 napaJ (VEM) and cryo-transmission electron microscopy (Cryo-TEM). .T eamI tnemtrapeD fo yrtsimehC of Faculty ecneicS Key words Reverse vesicles sucrose ayogaN ytisrevinU uk-asukihC alkanoates - cryo-electron micro- ayogaN ,464 napaJ scopy video enhanced microscopy introduction Sucrose alkanoates are unique and biocompatible sur- factants which possess a strong hydrophilic sucrose ring. Contrary to normal vesicles formed in water, recently it Ordinary polyoxyethylene-tynpoen ionic surfactants are was found that closed bimolecular layers can be also in general completely miscible with hydrocarbons, but do formed in nonpolar media [1-11]. The self-organizing not self-associate in the absence of water [13]. On the structure was named reverse vesicles. The orientation of other hand, the monomeric solubilities of sucrose al- amphiphilic molecules in bilayers of reverse vesicles is kanoates in nonpolar solvents are rather low and they opposite to that in normal vesicles. Reverse vesicles were tend to self-associate from self-organizing structure in non- found in various mixed surfactant systems in which polar media. hydrophilic and lipophilic surfactants were combined, In this paper, the condition to produce reverse vesicles Correlation between the surfactant molecular shape and is discussed and the formation of reverse vesicles ins ucrose resulting self-organizing structure can be explained by alkanoate systems is reported. The morphology of reverse geometrical packing model [12]. Since reverse vesicles are vesicles is shown by means of video enhanced micro- new self-organizing structures the packing condition of scopy (VEM) and cryo-transmission electron microscopy surfactant has not been reported. (Cryo-TEM). 2 H. Kunieda et al. Reverse vesicles latnemirepxE noissimsnart-oyrC nortcele :ypocsorcim A droplet of vesicular dispersion was placed on a TEM grid and quickly vitrified in Materials liquid nitrogen at its freezing point. The frozen sample was observed at 000 02X magnification on a transmission elec- Sucrose dodecanoates, L-1695 and L-595 were kindly sup- tron microscope, Hitachi H-800, operating at 001 .Vk plied by Mitsubishi Chemical Corp. L-1695 consists of 6.38 wt% sucrose monododecanoate, 15.2wt% sucrose stluseR dna noissucsid didodecanoate, and 1.2wt% sucrose tridodecanoate. L-595 consists of 30.3 wt% sucrose monododecanoate, Condition to produce reverse vesicles 3.93 wt% sucrose didodecanoate, and 30.4 wt% sucrose tridodecanoate. L-1695 is water-soluble whereas L-595 For normal vesicles in water, when the surfactant bilayer forms milky dispersion in water. By mixing L-1695 and forms a closed structure, the interfacial part of the outer L-595, we can prepare sucrose dodecanoates with different layer si the most compressed part as si shown in Fig. l(a). number of hydrophobic chains from 1.13 to .48.1 .giF 1 Schematic representation of normal and Methods reverse vesicles. s A is an interfacial area per one Water Sample preparation hydrophilic group (sucrose ring) and / is hydrocarbon chain length L-1695 and L-595 were dissolved in methanol in order to obtain a homogenized mixture. After evaporation of methanol in vaccuum, isooctane was added to the dried mixture. The sample was sonicated by means of an ultrasonicator (Shimadzu, USP-50) at 9 W for min. 5 Normal vesicle The vesicular dispersion was twice extruded using a 6.0 #m Millipore filter. Branched hydrocarbon, isooctane is used in order to avoid the crystallization of solvent when vitrifying. t liO ,lacitpO dna electron microscopy VEM: A differential-interference-phase-contrast (Nomarski- type) microscope (Nikon, X2F-NTF-21) equipped with an image processor (Hamamatsu Photonics Co., Argus )01 Reverse vesicle was used for VEM observation. Table 1 Packing parameter and formation of vesicles SE1 SE2 Average number of Normal vesicles in water Reverse vesicles in oil hydrocarbon chains v/A~'l R (nm) Formation v/A~. 1 R (nm) Formation 100 wt% 0 wt% 1.13 0.49 -- M 0.55 3.4 RV 90 10 1.19 0.52 --- - M M 0.58 3.7 RV 80 20 1.25 0.55 0.61 4.0 RV 70 30 13.1 0.57 -- M 0.64 4.3 RV 60 40 1.38 0.60 3.9 NV 0.67 4.7 RV 50 50 1.45 0.63 4.2 NV 0.71 5.2 RV 40 60 1.52 0.66 4.6 NV 0.74 5.9 RV 30 70 1.59 0.70 5.2 NV 0.78 7.0 RV 20 80 1.67 0.73 5.7 NV 0.81 11 1.8 RV 10 90 1.75 0.77 6.6 NV 0.86 RV 0 100 1.84 0.80 7.8 NV 0.90 15 RV

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.