ebook img

Trends in Colloid and Interface Science V PDF

511 Pages·1991·9.13 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Trends in Colloid and Interface Science V

Progress in Colloid & Polymer Science • Vol. 84 PROGRESS IN COLLOID & POLYMER SCIENCE Editors: H.-G. Kilian (Ulm) and G. Lagaly (Kiel) Volume 84 (1991) Trends in Colloid and Interface Science V Guest Editor: M. Corti (Pavia) and F. Mallamace (Messina) Steinkopff Verlag • Darmstadt Springer-Verlag • N e w York 0 4 ISBN 3-7985-0885-2 (FRG) ISBN 0-387-91399-8 (USA) ISSN 0340-255-X This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically these rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. Duplication of this publication or parts thereof is only permitted under the provisions of the German Copyright Law of September 9, 1965, in its version of June 24, 1985, and a copyright fee must always be paid. Violations fall under the prosecution act of the German Copyright Law. © 1991 by Dr. Dietrich Steinkopff Verlag GmbH & Co. KG, Darmstadt. Chemistry editor: Dr. Maria Magdalene Nabbe; English editor: James Willis; Production: Holger Frey. Printed in Germany. The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of specific state- ment, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Type-Setting: Graphische Texterfassung, Hans Vilhard, D-6126 Brombachtal Printing: betz-druck gmbh, D-6100 Darmstadt 12 Preface The first meeting of the European Colloid and In- mittee: M. Almgren, S. J. Candau, R. Klein, R. H. terface Society (ECIS) was held in Como, Italy, in Ottewfll, R. Strey and M. Zulauf; from the Italian 1987. Three years later, following meetings in Ar- Ministry of University and Scientific Research, Prof. cachon and Basel, the ECIS Conference was again A. Ruberti, and the President of the Regional held in Italy at Copanello di Catanzaro in Government of Calabria, Dr. R. Olivo, both for their September 1990. This gathering was attended by dedicated patronage; from the city of Catanzaro, participants from 21 countries, including the USA Mayor Dr. M. Furriolo and Cultural Attach6 G. and Russia. More than 150 papers were presented Guerriero; Prof. G. Stagno D~lcontres, Rector of either orally or as posters. This volume includes Messina University; and the generous sponsors most of these papers, which have been rather ar- who made the Copanello meeting possible: The bitrarily subdivided into six sections: Micelles, Italian Consiglio Nazionale delle Ricerche support- Microemulsions, Application of Colloids, Interac- ing the publication of this issue, the Departiment of tion and Ordering, Biological Macromolecules, and Physics of Messina University, the Assessorato Layers and Interfaces. The interdisciplinary nature Agricoltura della Regione Calabria, IBM-Italy, Spec- of these fields bordering between physics and tra Physics, dB Electronics, and Chemifarm. Finally, chemistry is evident. Unfortunately, it was, of particular thanks go to our hosts and the staff of course impossible to reproduce in this volume the Villaggio Guglielmo in Copanello for their lively, friendly atmosphere of the meeting; discus- hospitality. sions outside the conference room were wide-rang- ing and fruitful. On behalf of the ECIS, we thank: all the par- Mario Corti ticipants for their contributions; the scientific co r n - Franco Mallamace Contents VII Contents Preface V Micelles Safran SA, MacKintosh FC, Pincus PA, Andelman DA: Spontaneous vesicle formation by mixed surfactants. 3 Thalberg K, Lindman B, Karlstr6m G: Electrolyte dependent phase separation in aqueous mixtures of a polyelec- trolyte and an ionic surfactant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 van Stare J, Almgren M, Lindblad C: Sodium dodecylsulfate-poly(ethyleneoxide) interactions studied by time- resolved fluorescence quenching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Cantu L, Corti M, Musolino M, Salina P: Spontaneous vesicle formation from a one-component solution of a biological surfactant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Hoffmannn H, Hofmann S, Rauscher A, Kalus J: Shear-induced transitions in micellar solutions . . . . . . . . . . . 24 Lin T-L, Liu C-C, Roberts ME Chen S-H: Mixed short-chain lecithin/long-chain lecithin aggregates studied by small-angle neutron scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Appell J, Porte G: Polymer-like giant micelles. An investigation by light scattering . . . . . . . . . . . . . . . . . . . . . . . . 41 Glatter O: Scattering studies on colloids of biological interest (Amphiphilic systems) . . . . . . . . . . . . . . . . . . . . . . 46 Baglioni P, Dei L, Ferroni E, Kevan L: Electron spin echo modulation and electron spin resonance studies of sodium dodecylsulfate and dodecyltrimethylammonium bromide micellar solutons: Effect of urea addition 55 Hill A, Candau F, Selb J: Aqueous solution properties of hydrophobically associating copolymers . . . . . . . . . . 61 Despotovi4 R: On mixed surfactant systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Miinch C, Hoffmann H, Ibel K, Kalus J, Neubauer G, Schmelzer U, Selbach J: A shear-induced structure transi- tion on a micellar solution measured by time-dependent small-angle neutron scattering . . . . . . . . . . . . . . . . . 69 J6hnannsson R, Almgren M: A fluorescence and phosphorescence study of AOT/H20/aikane systems in the L 2 reversed micellar phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 L6froth J-E, Johansson L, Norman A-C, Wettstr6m K: Interactions between surfactants and polymers. I: HPMC 73 L6froth J-E, Johansson L, Norman A-C, Wettstr6m K: Interactions between surfactants and polymers. Ih Polyelectrolytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Malliaris A, Binana-Limbele W: Solubilization of aprotic additives in aqueous micelles . . . . . . . . . . . . . . . . . . . . 83 Tsiourvas D, Paleos CM, Malliaris A: Aggregation of polyamphiphiles with the polar head on the main chain 86 Onori G, Ronca M, Santucci A: Properties of water solubilized in reversed AOT micelles from near-infrared spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Onori G, Ronca M, Santucci A: Shape and solvation of water-containing reversed AOT micelles from viscosity measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Ravey JC, Gherbi A, St6b6 MJ: Mixed systems of fluorinated and hydrogenated nonionic surfactants: The air/water adsorbed film and micelles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Rauscher A, Rehage H, Hoffmann H: Stretched exponential relaxation processes in viscoelastic surfactant solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Schubert K-V, Strey R, Kahlweit M: 3PHEX: A new surfactant purification technique . . . . . . . . . . . . . . . . . . . . . . 103 Tondre C, Derouiche A: Solubilization of electrolyte solutions in AOT reversed micelles. Conductivity percola- tion and phase behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Treiner C, Bury R: Peculiar micellar solubilization of benzyl alcohol in binary benzyldimethyltetradecylam- monium chloride and trimethyltetradecylammonium chloride solutions: A calorimetric investigation . . . . . . 108 Korolenko EC, Shokhirev NV: Spin-controlled reactions on the micellar surface . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Microemulsions Teixeira J, Alba-Simionesco C, Angell CA: Glass transition in microemulsions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 Senatra D, Lendinara L, Giri MG: W/O microemulsions as model systems for the study of water confined in microenvironments: Low resolution 1H magnetic resonance relaxation analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 122 VIII Progress in Colloid & Polymer Science, Vol. 84 (1991) Atkinson PJ, Clark DC, Howe AM, Heenan RK, Robinson BH: Characterization of microemulsion-based organo- gels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 Baglioni P, Gambi CMC, Goldfarb D: Pulse electron spin resonance and quasi-elastic light scattering of Winsor microemulsions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 Rouch J, Safouane L, Cametti C, Codastefano P, Tartaglia P, Chen SH: A dynamic transition at the percolation threshold of a three-component microemulsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 Paillette M: Phase electric birefringence measurements in attractive-type W/O microemulsion systems . . . . . . . 144 Liano P, Duportail G: Fractal models for luminescence probing of organized assemblies. Studies with respect to the nature of the assembly, the temperature, and the quencher concentration . . . . . . . . . . . . . . . . . . . . . . . . 151 Mallamace F, Magazu S, Micali N, Salvetti P: Microemulsion as model system for the study of the glass-like tran- sition: Refractive index and calorimetric measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Mallamace F, Micali N, Vasi C, D?~rragio G, Paparelli A: Hypersound velocity measurements in dense microemulsions, evidence of a viscoelastic behavior connected with the percolation process . . . . . . . . . . . . . . 159 Interfaces Woermann D: Critical phenomena in associative binary liquid mixtures with miscibility gap . . . . . . . . . . . . . . . 165 Kuzmin SV, Malomuzh NP: Surface-induced polarization properties of highly viscous liquids . . . . . . . . . . . . . . 171 Dgkrrigo G, MaUamace E Micali N, Paparelli A, Teixeira J, Vasi C: Aggregation phenomena in water-alcohol solu- tions. Thermodynamic and dynamic studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 Aveyard R, Binks BP, Fletcher PDI: Effects of subphase pH on the successive deposition of monolayers of docosanoic acid onto mica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 Gambaro M, Gliozzi A, Robello M: Effect of surface charges on the electroporation process in lipid bilayers. 189 Meunier J, Henon S: Optical study of monolayers at liquid interfaces: Direct observation of first order phase tran- sitions and measurement of the bending elastic constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 Nahrinbauer h The interaction between polymer and surfactant as revealed by interfacial tension . . . . . . . . . . 200 R6hl W, von Rybinski W, Schwuger MJ: Adsorption of surfactants on low-charged layer silicates. Part I: Adsorp- tion of cationic surfactants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 Bartolotta A, Di Marco G, Carini G, Tripodo G: Study of local and cooperative molecular movements in Po- ly(ethylene oxide) -- Potassium thiocyanate complexes by mechanical measurements . . . . . . . . . . . . . . . . . . . . 215 Caminati G, Tomalia DA, Turro NJ: Photo-induced electron transfer at polyelectrolyte-water interface . . . . . . . 219 da Gra~a M. Miguel M, Burrows HD: Luminescence study of fluidity in the La mesophase and liquid phase of lead(H) decanoate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 Bartolotta A, Di Marco G, Carini G, Tripodo G: Relaxation processes in polymeric electrolytes: Effect of the ca- tion size and of the thermal history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 Gabrielli G, Puggelli M, Prelazzi G: Mono- and multi-layers containing ion carriers . . . . . . . . . . . . . . . . . . . . . . . 232 Gallegos C, Nieto M, Nieto C, Mufioz J: Influence of surfactant concentration on the time-dependent theological behavior of the lamellar liquid crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 G6bel S, Hiltrop K: Influence of organic counterions on the structure of lyotropic mesophases . . . . . . . . . . . . . 241 Miller CA, Gradzielski M, Hoffmann H, Kr/imer U, Thunig C: L3 phases: Their structure and dynamic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 Kaeder U, Hiltrop K: Alignment of lyotropic nematics by surface action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 Lachaise J, Sahnoun S, Dicharry C, Mendiboure B, Salager JL: Improved determination of the initial structure of liquid foams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 Papirer E, Perrin JM, Siffert B, Philipponneau G: Surface characteristics of colloidal aluminas and barium titanates determined by inverse gas chromatography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 Sch6n G, Peschel G, Stobbe H: Impedance-spectroscopic investigations of water structure near silica surfaces 262 Porte G, Appell J, Bassereau P, Marignan M, Skouri M, Billard I, Delsanti M, Candau SJ, Strey R, Jahn W, Snabre P: Scaling laws for some physical properties of the L3 phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264 Paluch M: Effect of halogeno substituted ethyl alcohols on the surface potential and on the surface tension at the water/air interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 Burger A, Rehage H: Two-dimensional model networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 Rolandi R, Dante S, Maga L, Robello M: Domains formation in polymerized monolayers revealed by fluorescence microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 Schroder A, Candau SJ: Study of the swelling of latex particles by means of ultrasonic techniques . . . . . . . . . 275 Vandevyver M, Roulliay M, Bourgoin JP, Barraud A, Morand JP, Noel O: Structure-reactivity relationship in Langmuir-Blodgett films of bisethylenedithio-tetrathiafulvalene (BEDT-TFF) derivatives . . . . . . . . . . . . . . . . . . . 279 Has M, Lfidemann H-D: p,T dependence of the hydrophobic interaction in a model solution . . . . . . . . . . . . . . 283 Shokhirev NV, Burshtein AI: The change in density and pressure tensor at the liquid-vapor interface . . . . . . . 285 Contents IX Vituhknovsky AG, Sluch MI: Optical properties of Langmuir-Blodgett films: perylene excimer formation . . . . 288 Churaev N, Kotov A, Solometsev Y, Starov V: The influence of charged gel layers on the electrokinetic phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290 Kotov A, Solomentsev Y, Starov V: Direct approach of two particles covered with a porous layer . . . . . . . . . . . 293 Application of Colloids Bongiovanni R, Ottewill RH, Rennie AR: Small-angle neutron scattering from dispersions of organophilic clays 299 Carpineti M, Giglio M, Paginini E, Perini U: Low-angle static light scattering by fast aggregation of polystyrene latex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305 Siffert B, Badri F: Competition between micellization and adsorption of alkyl-PEO diblock copolymers on titanium dioxide particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309 Fucile E, Denti P, Saija R, Borghese F, Sindoni OI: Density dependence of the extinction coefficient of a disper- sion of spherical metal particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318 Carri6n Fit6 FJ: Electrokinetic behavior of polyester and solid impurity during washing process in the presence of cellulose ethers and NTA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319 Herzog B: Micelle shape and capacity of solubilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325 Callejas-Fern~indez J, de las Nieves FJ, Martinez-Garcfa R, Hidalgo-Alvarez R: Electrokinetic characterization and colloid stability of calcium oxalate monohydrate dispersions in the presence of certain inhibitors . . . . . . . . . . 327 Jenta TR-J, Robinson BH, Batts G, Thomson AR: Enzyme kinetic studies using lipase immobilised in microemul- sion-based organogels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334 Mendiboure B, Graciaa A, Lachaise J, Marion G, Bourrel M, Salager JL: Influence of the intensity of mixing on the droplet size distribution of emulsions: Theory and experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338 Lisiecki I, Lixon P, Pileni MP: Synthesis in situ in reverse micelle of copper metallic clusters . . . . . . . . . . . . . . . 342 Tondre C, Claude-Montigny B, Ismael M, Scrimin P, Tecilla P: Metal-ion complexation by micelle-solubilized long-chain complexing agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345 Te~ak D, Heimer S, Derek V, Strajnar F: Precipitation of aluminium with surfactant in sea-water . . . . . . . . . . . 348 Palberg T, Hartl W, Deggelmann M, Simnacher E, Weber R: Comparison of charge numbers of interacting latex spheres from different experiments: Conductivity, electrophoresis, torsional resonance detection, and static light scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352 Schulz SF, Maier EE, Hagenbfichle M, Graf Ch, Weber R: Structural properties of dilute aqueous solutions of charged rods studied by light-scattering techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356 Di Biasio A, Bolle G, Cametti C, Codastefano P, Tartaglia P: Light scattering from aggregating colloids: Stretched exponential behavior of the time correlation function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359 Weyerich B, DAguanno B, Canessa E, Klein R: On the structure of suspensions of charged rodlike particles. 362 Interaction and Ordering Candau SJ, Ilmain F, Moussa'id A, Schosseler F: Structure and properties of partially neutralized poly(acrylic acid) gels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369 Ostrowsky N, Gamier N: Brownian dynamics close to a wall, measured by quasi-elastic light scattering from an evanescent wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371 Arauz JL, Ruiz-Estrada H, Medina-Noyola M, Nagele G, Klein R: Tracer-diffusion in binary mixtures of charged spherical macroparticles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377 D~guanno B, M6ndez-Alcaraz J, Klein R: Structure and thermodynamics of mixtures of charged spherical col- loidal particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381 Granfeldt MK, J6nsson B, Woodward CE: The interaction between charged colloids with adsorbed polyelectrolytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391 Palberg T, Simon R, Leiderer P: Forced Rayleigh scattering in mixtures of colloidal particles . . . . . . . . . . . . . . . . 397 Mimouni Z, Mathis C, Bossis G: Analysis of alignments of colloidal spheres by light scattering . . . . . . . . . . . . 402 Peschel G, van Brevern O: The contribution of hydration forces to particle-particle interaction in a silica hydrosol 405 Chang S-L, Chen S-H, Rill RL, Lin JS: Measurement and interpretation of counterion distribution around cyclin- drical polyelectrolytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409 Chabalgoity-Rodrfguez A, Marffn-Rodrfguez A, Galisteo-Gonz~lez F, Hidalgo-Alvarez R: Electrophoretic mobili- ty, primary electroviscous effect and colloid stability of highly charged polystyrene latexes . . . . . . . . . . . . . . . 416 Lemaire E, Paparoditis C, Bossis G: Yield stress in magnetic suspensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425 Mallamace F, Micali N, Vasi C: Role of the ionic strength in the viscosity of charged colloids . . . . . . . . . . . . . . . 428 X Con~n~ Bio log ica l Macrom o l e s Margheri E, Bonosi F, GabrieUi G, Martini G: Spectroscopic investigation on the effect of the addition of ceramide into lipid vesicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435 Giordono R, Grasso A, Teixeira J, Wanderlingh E Wanderlingh U: SANS in lysozyme solutions . . . . . . . . . . . . 439 Huruguen JP, Pileni MP: Changes in the percolation threshold by cytochrome c addition in AOT reverse micelles 442 Gallardo V, Bolivar M, Salcedo J, Delgado AV: A study of the effect of different amino acids on the electrical properties of nitrofurantoin suspensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447 De Cuyper M, Joniau M: Effect of dimethylsulfoxide on the kinetics and thermodynamics of asymmetric phospholipid fluxes between magnetic and non-magnetic vesicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456 Deriu A, Cavatorta E Cabrini D, Middendorf HD: Molecular structure and dynamics of biopoylmer gels by neutron scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461 Cametti C, De Luca E D'nario A, Macri MA, Briganti G, Maraviglia B: The ripple phase in model membrane systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465 Domazou AS, Mantaka-Marketou AE: Fluidity variation of DODAB vesicular membranes with estrogen hor- mone using the lucigenin chemiluminescent reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470 Edwards K, Almgren M: Solubilization of lecithin vesicles by C12E8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472 Fisicaro E, Pelizzetti E, Lanfredi E, Savarino P: Osmotic coefficients of N-nonyl- and N-decyl-nicotinamide chloride surfactant aqueous solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474 Aliotta E Fontanella ME, Magazu" S, Wandeflingth F: Hypersonic properties in macromolecular aqueous solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483 Giordano R, Grasso A, Wanderlingh F, Wanderlingh U: Static and dynamic properties in thixotropic structures 487 G~ilvez-Ruiz MJ, Cabrerizo-Vflchez MA, Galisteo-Gonz~lez F, Hidalgo-Alvarez R: Study of temperature and pH effects on phase transition liquid expanded/liquid condensed of cholesterol, lecithin and lithocholic acid mixed monolayers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494 Seras M, GrabieUe-Madelmont C, Paternostre M-T, Ollivon M, Handjani-Vila R-M: Study of non-ionic monoalkyl amphiphile-cholesterol vesicles solubilization by octylglucoside . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502 Staunton S, Quiquampoix H: The use of a trace amount of methylated bovine serum albumin as a probe of the state of bovine serum albumin adsorbed on montmorillonite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506 Xenakis A, Valis TP, Kolisis N" Microemulsions as a tool for enzymatic studies: The case of lipase . . . . . . . . . . 508 Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512 Subject Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514 Progress in Colloid & Polymer Science Progr Colloid Polym Sci 84:3--7 (1991) Spontaneous vesicle formation by mixed surfactants S. A. Safranl'4), E C. MacKintosh1), P. A. Pincus2), and D. A. Andelman 3) 1) Exxon Research and Engineering, Annandale, New Jersey, USA 2) Materials Department, University of California, Santa Barbara, California, USA 3) Raymond and Beverly Sackler Faculty of Exact Sciences, School of Physics and Astronomy, Tel Aviv University, Ramat Aviv, Israel 4) Polymer Dept., Weizmann Institute, Rehovot, Israel Abstract: Although single surfactants rarely form vesicles spontaneously, mixtures of two surfactants can lead to spontaneous vesicle formation. By considering the curvature elasticity of the surfactant bilayer, we show theoretically how the energetic stabilization of mixed vesicles can occur. In- teractions between the two species (of the proper sign and magnitude) are crucial to stabilizing these vesicles. These interactions lead to composition asymmetries and effective spontaneous curvatures of the inner and outer layers that are of equal and opposite signs. Key words: _Vesicle; surfactant; selfassociation I. Introduction phiphilic monolayers which, in the single surfactant case, have the same spontaneous curvature [6]. Since vesicles rarely form as the equilibrium Since the two layers have curvature of opposite sign structure of simple surfactant-water systems, non- (e.g., the inner one being concave with respect to equilibrium methods, such as sonication of lameUar the water, and the outer one convex), the system is liquid crystalline phases, are usually necessary to frustrated. Small vesicles, where the vesicle radius obtain a metastable phase of vesicles, which may is of the order of the surfactant size, can be of lower reequilibrate back into the multilamellar, liquid energy than fiat bilayer, as discussed in [9--12]. crystalline structure. Recently, however, Kaler et al. However, they may be of higher free energy than [1] have reported a general method for producing small micelles. In this work, we consider the case of equilibrium phases of vesicles of a controlled size. large vesicles and discuss their stability with respect The vesicles form spontaneously upon mixing sim- to lamellar phases; this feature can be compared ple surfactants with oppositely charged head with the experimental phase diagrams [13]. We find groups. Most previous reports of spontaneous vesi- [7, 8] that the stabilization of the vesicles by surfac- cle formation have also involved surfactant mixtures tant mixtures only occurs when interactions of the [2--5]. Using the charge as a control parameter has surfactants is considered; ideal mixing of the two both chemical and physical advantages since a wide components does not yield vesicles as the ground variety of head group, counterion, and salt state. These results can be used to see how the in- chemistries can be prepared and studied. teractions can be exploited to control and stabilize In this paper, we use the concepts of curvature the vesicle phase. elastic theory [6] to explain the stability of vesicles formed in mixed surfactant systems. In systems composed of a single surfactant, the curvature II. Mixed vesicles energy of a bilayer dictates that the energy of a phase of spherical vesicles is never lower than that In contrast to the situation for single amphiphiles, of a multilamellar, liquid crystalline phase [7, 8]. where large vesicles are usually not energetically This is because the bilayer is composed of two am- stable in comparison with fiat bilayers, vesicles 4 Progress in Colloid & Polymer Science, Vol. 84 (1991) composed of two amphiphiles can have lower cur- interactions result in a local deformation of the vature energies than fiat films. The curvature bond distances compared to their values for the energy [6--8] per unit area of the vesicle is given by pure surfactants (which are assumed to have the same bond lengths). We describe this by a quantity Aij, which is the change in the bond length bet- fc = 2K[(c + c0)2 + (c - -c i ) 2], (1) ween surfactants at nearest-neighbor sites i and j. Finally, there is an elastic-restoring force, with where K is the bending elastic modulus [7, 8], q spring constant k: and co are the spontaneous curvatures of the inner and outer monolayers, and c is the actual curvature H = ~. S ~ S j - B(1 -- SiSj)A 0 + - ~ A . (3) of the inner layer. For the case of single surfactant (ij~ systems, in the limit of small curvatures, co = c~. In this case, the minimum of fc with respect to c im- Here, B represents the strength of the coupling be- plies that c = 0; fiat bilayers are the lowest bending tween the composition and elastic degrees of energy state. For mixed surfactants, constitutive freedom. Equation (3) represents the compressible relations for effective spontaneous curvatures of the Ising model. inner and outer layers, ci and co are needed. The mean-field value of (A,) is found by For simplicity, we consider a model where the minimizing Eq. (3) with respect to (Ais): spontaneous curvatures of films composed of each, single surfactant are equal, cl = c2 , and define ¢/as (A~j) = B(1 -- (S~Sj))/k ; (4) the volume fraction of surfactant type "2" in the system. In addition, we define ¢/~ and ¢/0 as the the resulting expression for the free energy per sur- volume fraction of surfactant "2" in the inner and factant h is outer layers, respectively. The composition differ- ence between these two layers is rp = 1/2(¢/0 -- ~i), B 2 with the constraint of fixed ~, --- 1/2(¢/0 + ~,~). h = l ( S , - (1 - ( s , sj ) 2 . (5) We now describe a simple statistical model for the surfactant head-head interactions which allows for a unified treatment of the free energy of the system In random mixing, the nearest-neighbor correlation including both the elastic, entropic, and interaction function (SiSj) can be found by weighting the two contributions. Our basic assumption is that the in- possible values by the appropriate product of in- teraction between head groups alone determines dependent probabilities for finding surfactants 1 the spacing between surfactants at the interfaces, and 2 at each site: while the resulting compression of the surfactant tails determines the spontaneous curvature of each ( s i s j ) = (1 - + C 2- ,(1 - monolayer. (In [11], we shall relax this assumption.) = ( 1 - - 2 ¢ / ) 2 . (6) In this case, the spontaneous curvature depends directly on the mean spacing between surfactant Simple models for the packing of surfactant head groups as a function of composition, ¢/. molecules at a surface yield a spontaneous cur- We first consider a monolayer with a repulsive in- vature which depends linearly on the mean spacing teraction +J between like head groups, and an at- between polar head groups. Within the model of tractive interaction, - J between opposite head the previous section, the change in the spon- groups. This suggests an Ising model description taneous curvature depends on (Aij), and hence on for the energy H of a two-component mixture: I s i s j l : H = ~ JS~Sj, (2 ) / / ( 1 - - ( S i S j ) ) = - - (7) - - c ( 0 ) = 7 where the sum over (i]) includes only nearest neighbor pairs. The constituents are labeled by i, The parameter ]/is of order a -1, where a is a micro- and Si = +1 (--1) denotes the presence of surfac- scopic length. The precise value of ] /can be obtain- tant (2). Furthermore, the attractive or repulsive ed, although it is somewhat model specific [11].

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.