ebook img

Traveling Wave Analysis of Partial Differential Equations: Numerical and Analytical Methods with Matlab and Maple PDF

446 Pages·2011·7.26 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Traveling Wave Analysis of Partial Differential Equations: Numerical and Analytical Methods with Matlab and Maple

“01-fm-i-iv-9780123846525” — 2010/12/8 — 15:29 — page 1 — #1 Traveling Wave Analysis of Partial Differential Equations “01-fm-i-iv-9780123846525” — 2010/12/8 — 15:29 — page 3 — #3 Traveling Wave Analysis of Partial Differential Equations Numerical and Analytical Methods (cid:114) with MATLAB and Maple™ Graham W. Griffiths CityUniversity,London,UK William E. Schiesser LehighUniversity,Bethlehem,PA,USA AMSTERDAM•BOSTON•HEIDELBERG•LONDON NEWYORK•OXFORD•PARIS•SANDIEGO SANFRANCISCO•SINGAPORE•SYDNEY•TOKYO AcademicPressisanimprintofElsevier “01-copy-iv-9780123846525” — 2010/12/8 — 15:25 — page 4 — #1 AcademicPressisanimprintofElsevier 30CorporateDrive,Suite400,Burlington,MA01803,USA TheBoulevard,LangfordLane,Kidlington,Oxford,OX51GB,UK Copyright©2012ElsevierInc.Allrightsreserved. Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearance CenterandtheCopyrightLicensingAgency,canbefoundatourWebsitewww.elsevier.com/permissions ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(other thanasmaybenotedherein). MATLAB(cid:114)isatrademarkofTheMathWorks,Inc.andisusedwithpermission.TheMathWorksdoesnotwarrant theaccuracyofthetextorexercisesinthisbook.Thisbook’suseordiscussionofMATLAB(cid:114)softwareorrelated productsdoesnotconstituteendorsementorsponsorshipbyTheMathWorksofaparticularpedagogical approachorparticularuseoftheMATLAB(cid:114)software. Notices Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecome necessary. Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusing anyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethods theyshouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhavea professionalresponsibility. Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeany liabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceor otherwise,orfromanyuseoroperationofanymethods,products,instructions,orideascontainedinthe materialherein. LibraryofCongressCataloging-in-PublicationData Applicationsubmitted BritishLibraryCataloguing-in-PublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary. ISBN:978-0-12-384652-5 ForinformationonallAcademicPresspublications visitourWebsiteatwww.elsevierdirect.com Typesetby:diacriTech,India PrintedintheUnitedStatesofAmerica 11 12 13 14 8 7 6 5 4 3 2 1 “02-ded-v-vi-9780123846525” — 2010/12/8 — 15:20 — page v — #1 Dedication Toourteachers,withrespectandappreciation. “04-pref-xi-xiv-9780123846525” — 2010/12/8 — 15:21 — page xi — #1 Preface Partialdifferentialequations(PDEs)havebeendevelopedandusedinscienceandengineer- ing for more than 200 years, yet they remain a very active area of research because of both theirroleinmathematicsandtheirapplicationtovirtuallyallareasofscienceandengineer- ing.Thisresearchhasbeenspurredbytherelativelyrecentdevelopmentofcomputersolution methods for PDEs. These have extended PDE applications such that we can now quantify broadareasofphysical,chemical,andbiologicalphenomena.ThecurrentdevelopmentofPDE solutionmethodsisanactiveareaofresearchthathasbenefitedgreatlyfromadvancesincom- puterhardwareandsoftware,andthegrowinginterestinaddressingPDEmodelsofincreasing complexity. Alargeclassofmodelsnowbeingactivelystudiedareofatypeandcomplexitysuchthat their solutions are usually beyond traditional mathematical analysis. Consequently, numeri- cal methods have to be employed. These numerical methods, some of which are still being developed, require testing and validation. This is often achieved by studying PDEs that have knownexactanalyticalsolutions.Thedevelopmentofanalyticalsolutionsisalsoanactivearea of research, with many advances being reported recently, particularly for systems described bynonlinearPDEs.Thus,thedevelopmentofanalyticalsolutionsdirectlysupportsthedevel- opmentofnumericalmethodsbyprovidingaspectrumoftestproblemsthatcanbeusedto evaluatenumericalmethods. This book surveys some of these new developments in analytical and numerical meth- ods and is aimed at senior undergraduates, postgraduates, and professionals in the fields of engineering, mathematics, and the sciences. It relates these new developments through the expositionofaseriesoftravelingwavesolutionstocomplexPDEproblems.ThePDEsthathave beenselectedarelargelynamedinthesensethattheyaregenerallycloselylinkedtotheirorig- inalcontributors.ThesenamesusuallyreflectthefactthatthePDEsarewidelyrecognizedand areoffundamentalimportancetotheunderstandingofmanyapplicationareas.Eachchapter .followsthegeneralformat: ThePDEanditsassociatedauxiliaryconditions(initialconditions(ICs)andboundary . conditions(BCs))arestated. Aseriesofroutinesisdiscussedwithdetailedexplanationsofthecodeandhowitrelatesto thePDE.TheyarewritteninMatlabbuthavebeenspecificallyprogrammedsothatthey canbeeasilyconvertedtoequivalentroutinesinotherlanguages.Theroutineshavethe followingcommonfeatures: – Thenumericalprocedureisthemethodoflines(MOL)inwhichtheboundaryvalue (spatial)partialderivativesarereplacedwithalgebraicapproximations,inthepresent casefinitedifferences(FDs),althoughotherapproximationssuchasfiniteelements (FEs),finitevolumes(FVs),andspectralmethods(SMs)couldbeused.TheFD approximationsareimplementedinaseriesoflibraryroutines;thedetailsofhowthese routinesweredevelopedaregivenasanintroductiontofacilitatethedevelopmentof newroutinesthatmayberequiredforparticularPDEapplications. TravelingWaveAnalysisofPartialDifferentialEquations.DOI:10.1016/B978-0-12-384652-5.xxxxx-x xi Copyright©2011byElsevierInc.Allrightsreserved. “04-pref-xi-xiv-9780123846525” — 2010/12/8 — 15:21 — page xii — #2 xii Preface – Theresultingsystemofordinarydifferentialequations(ODEs)inaninitialvalue variable,typicallytimeinanapplication,isthenintegratednumericallyusinganinitial valueODEintegratorfromtheMatlablibrary. – Thedisplayednumericaloutputalsoincludestheanalyticalsolutionandthedifference betweenthenumericalandanalyticalsolutions.Theagreementbetweenthetwo solutionsisdisplayednumericallyandgraphicallyasawayofdemonstratingthe . validityofthenumericalmethods. AnanalyticalsolutionforthePDEisstated,includingareferencetotheoriginalsourceof thesolution,andinsomecases,averification(proof)ofthesolutionbysubstitutioninto . thePDEandauxiliaryconditions. Additionally,inseveralchapters,theanalyticalsolutionisderivedbyrelativelynew techniquessuchasthetanh-,exp-,Riccati-orfactorization-basedmethods.Thederivation iseitherbydirectapplicationoftheanalyticalmethodorthroughtheuseofthecomputer algebrasystem(CAS),Maple.WhereMapleisused,theassociatedcodeisincludedinthe textalongwithadescriptionofitsmainfunctionalelements.Thiscodeusually demonstratestheuseofournewMapleprocedures,whichimplementvariousanalytical methodsthataredescribedinthetext.GraphicaloutputfromtheseMapleapplicationsis provided,includinga2Danimation(tofacilitateinsightintoandunderstandingofthe solution)andaplotin3Dperspective.Mapleisalsousedinotherchapterstoconfirm analyticalsolutionsfromtheliterature.Whereappropriate,thecodeisprovidedinthemws . fileformataswellasthemwformatsothatitwillalsoruninearlyversionsofMaple. Theformoftheanalyticalsolutionisconsidered,withparticularemphasisontraveling waveanalysisbywhichthePDE(inanEulerianorfixedframe)isconvertedtoanODE(ina Lagrangianormovingframe).AnanalyticalsolutiontotheODEisthenderivedandthe . inversecoordinatetransformationisappliedtoprovideananalyticalsolutiontothePDE. AsecondapproachtoaPDEanalyticalsolution,themethodofresidualfunctions,isalso usedinsomeofthechapterstoderiveananalyticalsolutiontoaPDEthatiscloselyrelated . totheoriginalPDE. Thebasicapproachoftravelingwaveanalysis,wherebyaPDEistransformedtoan associatedODE,isalsoreversedintwochapters.ThesestartwithODEsthatarethen restatedasPDEsthatarefirstandsecondorderintheinitialvaluevariable.Theanalytical . solutiontotheinitialODEisthenprovidedasananalyticalsolutiontothePDE. ThestructureofthePDEisusuallyrevisitedbrieflywithregardtoitsform,suchaswhether itisfirstorsecondorderintheinitialvaluevariable,theorderoftheboundaryvalue derivatives,thefeaturesofnonlinearterms,andtheformoftheBCs.Inthisway,the intentionofthefinalsummaryistosuggestconceptsandcomputationalapproachesthat . canbeappliedinnewPDEapplications. Eachchapterconcludeswithadiscussionofthenumericalsolution,particularlyhowit conformstotheinitialstatementofthePDEanditsauxiliaryconditions;alsothe numericalsolutionisevaluatedwithregardtothemagnitudeoftheerrorsandhowthese . errorsmightbereducedthroughadditionalcomputation. InChapter2wediscussthelinearadvectionequation,oneofthesimplestPDEs,andshow thatsolutionsinvolvingsteepgradientsordiscontinuitiescanbedifficulttoachieve numerically.Wethenillustratehowfluxlimiterscanbeemployedtoimprovethefidelityof thenumericalsolution.Ashortappendixtothischapterisalsoincluded,whichbriefly . discussessomeofthebackgroundtotheideasbehindfluxlimiters. Ageneralappendixdetailsthetanh-,exp-,Ricatti-,directintegration-,and factorization-basedmethods.Mapleimplementation,bywayofnewlydeveloped procedures,isincludedforthetanh-,exp-andRicatti-basedanalyticalmethods.As “04-pref-xi-xiv-9780123846525” — 2010/12/8 — 15:21 — page xiii — #3 Preface xiii referredtoabove,thesegeneralfeaturesarethenreferencedforspecificapplicationsin appendicestoindividualchapters. InsummarythemajorfocusofthisbookisthenumericalMOLsolutionofPDEsandthe testingofnumericalmethodswithanalyticalsolutions,throughaseriesofapplications.The originoftheanalyticalsolutionsthroughtravelingwaveandresidualfunctionanalysisprovides aframeworkforthedevelopmentofanalyticalsolutionstononlinearPDEsthatarenowwidely reported in the literature. Also in selected chapters, procedures based on the tanh, exp, and Ricattimethodsthathaverecentlyreceivedmajorattentionareusedtoillustratethederivation of analytical solutions. References are provided where appropriate to additional information onthetechniquesandmethodsdeployed. Ourintentionistoprovideasetofsoftwaretoolsthatimplementnumericalandanalytical methodsthatcanbeappliedtoabroadspectrumofproblemsinPDEs.Theyarebasedonthe conceptofatravelingwaveandthecentralfeatureofthesemethodsisconversionofthesystem PDEstoODEs.Thediscussionislimitedtoone-dimensional(1D)PDEsandcomplementsour earlierbookACompendiumofPartialDifferentialEquationModels:MethodofLinesAnalysis withMatlab,CambridgeUniversityPress,2009. Finallyallthecodediscussedinthisbook,alongwithasetoftheMOLDSSlibraryroutines, isavailablefordownloadfromwww.pdecomp.net. GrahamW.Griffiths Nayland,Suffolk,UK WilliamE.Schiesser Bethlehem,PA,USA June1,2010 “05-ch01-001-006-9780123846525” — 2010/12/9 — 12:58 — page 1 — #1 1 Introduction to Traveling Wave Analysis Most applications of partial differential equations (PDEs) in science and engineering require numerical solutions, since the equations are typically too complicated, both in numberandform,toadmitanalyticalsolutions.However,numericalprocedures(meth- ods,algorithms)areavailabletocomputenumericalsolutionstomostproblems.Inthis book,weintroducethemethodoflines(MOL),ageneralnumericalprocedurethatcanbe appliedtoallthemajorclassesofPDEs. InordertotestMOLalgorithmsandsoftware,whichgivesussomeassurance,thatthe methodsarecorrect,weutilizeanalytical(exact)solutionsforcomparisonwiththenumer- icalsolutions.Inthesubsequentdiscussion,wepresenttwodistinctmethodologieswith regard to the derivation of analytical solutions that have been widely used and reported extensively.Theyare(1)thetravelingwavemethodand(2)theresidualfunctionmethod. The approach we have followed is, for each chapter, to illustrate the use of these meth- odsthroughexampleapplications.Thus,typicallyaMOLnumericalsolutionispresented foranimportantPDEthroughaparalleldiscussionoftheequationsandMatlabroutines. Theparticularfocusoftheapplicationisemphasized,e.g.,calculationofthePDEspatial derivatives, implementation of the boundary conditions, and extension of the applica- tiontoothercasesthatrequireanumericalsolution.Inaddition,ananalyticalsolutionis derivedusingeithertheassociatedtravelingwaveorresidualfunctionmethod.Thetrav- elingwaveanalyticalsolutionsarederivedwithMapleproceduresandscriptsthatarealso presented. Through this approach, we hope to convey the essence of MOL and analyti- cal analysis as applied to a series of applications that illustrate a spectrum of important conceptsanddetails. Westartwithabriefintroductiontothemethodsoftravelingwavesolutionsandresid- ualfunctionstoprovideanalyticalsolutionsthatcanbeusedtotestthenumericalMOL procedures. Traveling Wave Solutions WeconsiderageneralPDE (cid:32) (cid:33) ∂u ∂u ∂2u ∂2u ∂3u =f u, , , , ,... (1.1) ∂t ∂x ∂x2 ∂x∂t ∂x2∂t . TravelingWaveAnalysisofPartialDifferentialEquations DOI:10.1016/B978-0-12-384652-5.00001-7 1 Copyright©2012ElsevierInc.Allrightsreserved. “05-ch01-001-006-9780123846525” — 2010/12/9 — 12:58 — page 2 — #2 2 TRAVELINGWAVEANALYSISOFPARTIALDIFFERENTIALEQUATIONS whichcanbeanalyzedthroughachangeofvariablesu(x,t)=U(ξ),whereξ =ξ(x,t)isa functiontobespecified.Then,eq.(1.1)canbewrittenas ∂u dU ∂ξ (cid:18) dU ∂ξ ∂ (cid:18)dU ∂ξ(cid:19) ∂ (cid:18)dU ∂ξ(cid:19) ∂ (cid:20) ∂ (cid:18)dU ∂ξ(cid:19)(cid:21) (cid:19) = =f U, , , , ,... ∂t dξ ∂t dξ ∂x ∂x dξ ∂x ∂t dξ ∂x ∂t ∂x dξ ∂x (cid:32) dU ∂ξ dU(cid:18)∂2ξ(cid:19) d2U(cid:18)∂ξ(cid:19)2 dU(cid:18) ∂2ξ (cid:19) d2U(cid:18)∂ξ(cid:19)(cid:18)∂ξ(cid:19) (cid:33) =f U, , + , + ,... (1.2) dξ ∂x dξ ∂x2 dξ2 ∂x dξ ∂x∂t dξ2 ∂x ∂t ∂ξ ∂ξ Forthelinearcaseξ(x,t)=k(x−ct),thepartialderivativesineq.(1.2)are =−kc, = ∂t ∂x ∂2ξ ∂2ξ k, = =···=0.Thiscase(ξ(x,t)=k(x−ct))isgenerallytermedatravelingwave, ∂x2 ∂x∂t sinceitcorrespondstoalineartranslationalongthex axiswithrespecttot;k andc are arbitraryconstantsgenerallytermedthewavenumberandwavevelocity,respectively.For thiscase,eq.(1.2)reducesto (cid:32) (cid:33) dU dU d2U d2U d3U (−kc) =f U,k ,k2 ,−k2c ,−k3c ,... dξ dξ dξ2 dξ2 dξ3 orincanonicalform (cid:32) (cid:33) dU dU d2U d3U =f U, , , ,... (1.3) dξ dξ dξ2 dξ3 where the constants c and k are included in f. Equation (1.3) is an ordinary differential equation(ODE)inξ (whichillustratesaprincipaladvantageofatravelingwavesolution, i.e., a PDE is reduced to an ODE). If a solution to eq. (1.3), U(ξ), can be found, then the solutiontoeq.(1.1)followsasu(x,t)=U(ξ).Theextensiontootherderivativesineq.(1.1), ∂3u ∂3u ∂4u suchas , , ,...,followsinthesamewayastheprecedinganalysis. ∂x3 ∂x∂t2 ∂x4 The solution process for eq. (1.3) is often based on the auxiliary conditions that the dependent variable and its first, second, and higher spatial derivatives tend to zero as ξ →∞,i.e., dU(ξ→±∞) d2U(ξ→±∞) U(ξ→±∞)=0, =0, =0,...,etc. (1.4) dξ dξ2 Consequently,constantsofintegrationproducedduringthesolutionofeq.(1.3)aretaken aszero. Analyticalsolutionsofeq.(1.3)havetypicallybeenachievedusingmanyapproaches. We discuss in detail the following methods in the main Appendix and give examples throughoutthevariouschapters: . Directintegrationmethod,seeappendix3of[6],whichappliesstandardcalculus techniquestotransformtheproblemintoonethatcanbeintegrated.

Description:
Although the Partial Differential Equations (PDE) models that are now studied are usually beyond traditional mathematical analysis, the numerical methods that are being developed and used require testing and validation. This is often done with PDEs that have known, exact, analytical solutions. The d
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.