ebook img

Transportation Analytics in the Era of Big Data PDF

240 Pages·2019·8.568 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Transportation Analytics in the Era of Big Data

Complex Networks and Dynamic Systems 4 Satish V. Ukkusuri · Chao Yang Editors Transportation Analytics in the Era of Big Data Complex Networks and Dynamic Systems Volume 4 SeriesEditor TerryL.Friesz PennsylvaniaStateUniversity UniversityPark,PA,USA Moreinformationaboutthisseriesathttp://www.springer.com/series/8854 Satish V. Ukkusuri • Chao Yang Editors Transportation Analytics in the Era of Big Data 123 Editors SatishV.Ukkusuri ChaoYang SchoolofCivilEngineering TongjiUniversity PurdueUniversity Shanghai,China WestLafayette,IN,USA ISSN2195-724X ISSN2195-7258 (electronic) ComplexNetworksandDynamicSystems ISBN978-3-319-75861-9 ISBN978-3-319-75862-6 (eBook) https://doi.org/10.1007/978-3-319-75862-6 LibraryofCongressControlNumber:2018950450 ©SpringerInternationalPublishingAG,partofSpringerNature2019 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbytheregisteredcompanySpringerInternationalPublishingAGpart ofSpringerNature. Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Historicallytransportationstudieshaveprimarilyreliedonsurvey-basedapproaches forunderstandingtravelbehaviorandurbandynamics.Thelastfewyearshasseen an explosion of “big data” techniques due to the rapid proliferation of various passive and mobile sensors in urban areas providing high resolution and large dimensional data in urban transportation systems. The book will focus on recent advances in the area of big data analytics and their applicability to solve various issues in transportation systems planning and operations. The core algorithmic approaches for big data techniques are based on machine learning (ML) methods. Thesehaveprimarilybeendevelopedincomputerscienceandengineeringandhave widely been in various engineering applications in the last few years [1–4]. These methodsarerelativelynewinthetransportationsystemsareaandweestimatethere areapproximatelyaround55scholarsaroundtheglobeactivelyworkinginresearch, demonstrations,andapplicationspertainingtothevariousaspectsofbigdataurban mobilitymodeling. ThisbookdocumentsselectedpapersfromtheworkshoponBigDataAnalytics forTransportationModeling,whichwasorganizedonJuly16–17,2016,atTongji UniversitybyProfessorsSatishV.UkkusuriandChaoYang.Thisworkshopbrought together various international experts from academia, agencies, and industry to discuss emerging topics of interest in big data modeling. Various topics related to big data methods, data collection and curation, and applications for planning and operationsintransportationsystemswerepresentedattheworkshop.Theorganizers invited a selected set of participants to contribute chapters to this edited book. Finally, we selected about nine chapters for this book with authors from various universities in the world. Each book chapter was peer reviewed by at least two reviewersandwaseditedtofitwiththemainfocusofthebook.Thebookisdivided intoninechapters. Chapter 1 is based on utilizing tweet data for transportation planning appli- cations. Particularly, the authors focused on estimating the localization of non- geotagged tweets using point of interest data and other spatial variables. This method provides rich information of both the geo-located tweets and estimates of v vi Preface aggregatedlocationfromnon-geotaggedtweetsanddemonstratedtheusefulnessfor varioustransportationapplicationssuchasincidentdetection. Chapter2explorestheuseofsocialmediadatafromTwittertocomplementother datasourcestounderstandthreetransportationapplications—trafficeventdetection, humanmobilityexploration,andtrippurposeanddemandforecasting.Thechapter discusseshowtoleveragegeolocationtweetstoextractdisplacementofpeopleand automaticallyextracttopicsofrelevanceforpredictingeventshifts. Chapter3iswrittenbysomeoftheoriginalcollectorsoftaxidatainNewYork CityfromtheTaxiandLimousineCommission(TLC).Ontheonehand,thechapter provides a historical perspective of the data collection initiative starting in 2004. On the other hand, transportation network providers have fought hard to prevent theirdatafrombeingreleasedtotransportationregulators,frustratingtheirmission to implement policy, make and enforce regulations. The chapter highlights issues related to data accuracy, security, privacy, transparency, and compliance and the needforthird-partyindependentinstitutionstoauditandmaintainthisdata. Chapter 4 discusses a big data collection method using inertial measurement units (IMUs) to estimate vehicle path, detect traffic stops, and classify traffic- related events. The chapter discusses methods to estimate the vehicle trajectory from IMU and Bluetooth data and the mathematical problems that arise for an accurate estimation of such network-wide problems. The chapter discusses how to use this type of data to estimate traffic network states and at the same time maintainingtheprivacyofthedata. Chapter5discussesthedata,methods,andapplicationsoftrafficsourcepredic- tion,whichmayprovideanewwaytobetterunderstandthetrafficcongestion.The chapter discusses the “static driver source” that can be applied to urban planning and“dynamicdriversource”thatcansupporttrafficmanagementandcontrol.The chapteralsodiscusses“passengersource”inpublictransitsystem. Chapter 6 discusses a sequential K-means clustering algorithm that utilizes smart card data to categorize Beijing subway stations, which are clustered into ten groups that are classified under three categories, i.e., employment-oriented, dual-peak, and residence-oriented stations. The chapter employs a geographically weighted regression model to determine the correlation effect between peak-hour passengerflowandland-usedensity.Thefindingsofthischapterprovideinsightful information and theoretical foundations for rail transportation network design and operationsmanagement. Chapter7discussestherisingconcernforlocationprivacywiththeemergenceof GPScapablemobiledevicesandtheincreasingdemandofcontextualservicessuch aslocation-basedservices.Thechapterdiscussesthemethodofgeospatialanalyses asanevaluationtooloftheimpactofnoise-basedalgorithmsonlocationdata.The chapteridentifiesathresholdofnoisesettingssothatprivacycanbeprovidedwhile geo-statisticinferencesarenotaffectedgreatly. Chapter 8 discusses PErsonal TRansport Advisor (PETRA) EU FP7 project, which is to develop an integrated platform to supply urban travelers with smart journeyandactivityadvices,onamulti-modalnetwork.Thechapterdiscussesthe architectureofPETRAplatformandpresentsresultsobtainedbyapplyingPETRA Preface vii to two different use cases, namely journey planning under uncertainty and smart tourismadvisorwithcrowdbalancing.TheresultsofapplyingPETRAintwocities, RomeandVenice,arealsopresented. Chapter 9 is on mobility pattern identification using mobile phone call record data (CRD) of 60 days obtained from Shenzhen, China. The chapter discusses representative features that were captured from each pattern in both weekday and weekend. The mobility pattern discussed in this chapter provides a new way to understand travel behavior, which plays a crucial role in urban planning and epidemiccontrol. In summary, the chapters in the book provide a rigorous understanding of big data methods, analytics, and applications to various transportation planning, operations,andcontrolproblems.Furthermore,someofthechaptersdiscussnovel datacollectionmethodsanddataprivacyissues,whichareimportantasweinnovate inthisareainthefuture. Finally, we would like to acknowledge various people who have contributed to the completion of this book. We thank all authors who submitted their work for consideration. In addition, we thank the dozens of referees for their important work in reviewing the papers. We would also like to acknowledge the financial supportprovidedfortheworkshopbyFundamentalResearchFundsoftheCentral Universities. We also thank Dr. Xiangdong Xu for support during the workshop preparation.SeveralstudentsXianyuanZhan,XinwuQian,FenfanYan,andYulaing Zhangalsohelpedwiththeworkshoporganization. WestLafayette,IN,USA SatishV.Ukkusuri Shanghai,China ChaoYang December2017 References 1. P.S.Earle,D.C.Bowden,M.Guy,Twitterearthquakedetection:Earthquakemonitoringina socialworld.Ann.Geophys.54,708–715(2011). 2. N. Naik, R. Raskar, C.A. Hidalgo, Cities are physical too: Using computer vision to mea- sure the quality and impact of urban appearance. Am. Econ. Rev. 106, 128–132 (2016). doi:10.1257/aer.p20161030 3. X.Zhan,X.Qian,S.V.Ukkusuri,Agraphbasedapproachtomeasuringtheefficiencyofurban taxiservicesystem.IEEETrans.Intell.Transp.Syst.17(9),2479–2490(2016). 4. X.Qian,S.V.Ukkusuri,Timeofdaypricingintaximarkets.IEEETrans.Intell.Transp.Syst. 18(6),1610–1622(2017). Contents 1 BeyondGeotaggedTweets:ExploringtheGeolocalisationof TweetsforTransportationApplications................................... 1 JorgeDavidGonzalezPaule,YeranSun, andPiyushimita(Vonu)Thakuriah 1.1 Introduction ............................................................. 1 1.2 Background.............................................................. 2 1.3 Data...................................................................... 5 1.4 Methodology ............................................................ 6 1.5 Results................................................................... 12 1.6 Conclusions ............................................................. 17 References..................................................................... 19 2 SocialMediainTransportationResearchandPromising Applications .................................................................. 23 ZhenhuaZhangandQingHe 2.1 SocialMediaExplosion................................................. 23 2.2 ApplicationsBasedonSocialMedia................................... 26 2.3 Result.................................................................... 33 2.4 DiscussionsonFutureImprovementsandApplications .............. 41 References..................................................................... 42 3 GroundTransportationBigDataAnalyticsandThirdParty Validation:SolutionsforaNewEraofRegulationandPrivate SectorInnovation ............................................................ 47 MatthewW.Daus 3.1 PartI:HistoryofTaxiData............................................. 47 3.2 PartII:TheAdventoftheTNCMovementandTNCData........... 56 3.3 PartIII:GroundTransportationandtheFutureofBigData.......... 69 3.4 ConclusionandRecommendations:ANeedforThirdParty Validation................................................................ 75 ix x Contents 4 APrivacy-PreservingUrbanTrafficEstimationSystem ................ 81 TianLei,AlexanderMinbaev,andChristianG.Claudel 4.1 Introduction ............................................................. 81 4.2 SystemOverview ....................................................... 83 4.3 UserPrivacyAnalysis................................................... 87 4.4 InertialMeasurementUnitBasedTrafficFlowMonitoring........... 89 4.5 IMUCalibrationandTrajectoryEstimation........................... 90 4.6 DistributedComputingforTrafficStateEstimation................... 93 4.7 Conclusion .............................................................. 100 References..................................................................... 102 5 Data,Methods,andApplicationsofTrafficSourcePrediction ......... 105 ChengchengWangandPuWang 5.1 Introduction ............................................................. 105 5.2 Data...................................................................... 106 5.3 Methods ................................................................. 109 5.4 Applications............................................................. 115 5.5 DiscussionandConclusions............................................ 118 References..................................................................... 119 6 AnalyzingtheSpatialandTemporalCharacteristicsofSubway PassengerFlowBasedonSmartCardData .............................. 121 XiaoleiMa,JiyuZhang,andChuanDing 6.1 Introduction ............................................................. 121 6.2 SubwayStationClassification.......................................... 122 6.3 CorrelationBetweenPassengerFlowandLandUse.................. 136 6.4 Conclusions ............................................................. 149 References..................................................................... 150 7 AnInitialEvaluationoftheImpactofLocationObfuscation MechanismsonGeospatialAnalysis....................................... 153 PedroWightmanandMayraZurbarán 7.1 Introduction ............................................................. 153 7.2 Location-BasedServices................................................ 154 7.3 LocationPrivacyProtectionMechanisms.............................. 157 7.4 ExploratorySpatialDataAnalysis ..................................... 168 7.5 Methodology ............................................................ 170 7.6 Analysis of Experiments (the original one, Pinwheel withmaximumradiussetto500mandto1km)...................... 171 7.7 ConclusionsandOpenProblems....................................... 177 References..................................................................... 179 8 PETRA:ThePErsonalTRansportAdvisorPlatformandServices.... 181 Michele Berlingerio, Veli Bicer, Adi Botea, Stefano Braghin, FrancescoCalabrese,NunoLopes,RiccardoGuidotti, FrancescaPratesi,andAndreaSassi 8.1 Introduction ............................................................. 181 8.2 RelatedWork............................................................ 183 Contents xi 8.3 UseCasesOverview.................................................... 185 8.4 ModellingUncertaintyinMulti-ModalJourneyPlanning............ 187 8.5 PETRASystemComponents........................................... 193 8.6 CaseStudy:Rome ...................................................... 199 8.7 CaseStudy:Venice...................................................... 204 8.8 Conclusion .............................................................. 214 References..................................................................... 215 9 MobilityPatternIdentificationBasedonMobilePhoneData .......... 217 ChaoYang,YuliangZhang,SatishV.Ukkusuri,andRongrongZhu 9.1 Introduction ............................................................. 217 9.2 DataandMethodologies................................................ 218 9.3 ResultsandDiscussions ................................................ 223 9.4 Conclusions ............................................................. 231 References..................................................................... 232 Index............................................................................... 233

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.