TRANSFER MATRIX APPROACH TO PROPAGATION OF ANGULAR PLANE WAVE SPECTRA THROUGH METAMATERIAL MULTILAYER STRUCTURES Thesis Submitted to The School of Engineering of the UNIVERSITY OF DAYTON In Partial Fulfillment of the Requirements for The Degree Master of Science in Electro-Optics By Han Li UNIVERSITY OF DAYTON Dayton, Ohio December, 2011 TRANSFER MATRIX APPROACH TO PROPAGATION OF ANGULAR PLANE WAVE SPECTRA THROUGH METAMATERIAL MULTILAYER STRUCTURES Name: Li, Han APPROVED BY: ___________________________ ___________________________ Partha P. Banerjee, Ph.D. Joseph W. Haus, Ph.D. Advisor Committee Chairman Committee Member Professor Professor Department of Electrical Engineering Department of Electro-Optics And Electro-Optics Program Program __________________________ Andrew Sarangan, Ph.D. Committee Member Professor Department of Electro-Optics Program ___________________________ __________________________ John G. Weber, Ph.D. Tony E. Saliba, Ph.D. Associate Dean Dean, School of Engineering School of Engineering & Wilke Distinguished Professor ii ○c Copyright by Han Li All rights reserved 2011 iii ABSTRACT TRANSFER MATRIX APPROACH TO PROPAGATION OF ANGULAR PLANE WAVE SPECTRA THROUGH METAMATERIAL MULTILAYER STRUCTURES Name: Li, Han University of Dayton Advisor: Partha P. Banerjee The development of electromagnetic metamaterials for perfect lensing and optical cloaking has given rise to novel multilayer bandgap structures using stacks of positive and negative index materials. Gaussian beam propagation through such structures has been analyzed using transfer matrix method (TMM) with paraxial approximation, and unidirectional and bidirectional beam propagation methods (BPMs). In this thesis, TMM is used to analyze non-paraxial propagation of transverse electric (TE) and transverse magnetic (TM) angular plane wave spectra in 1 transverse dimension through a stack containing layers of positive and negative index materials. The TMM calculations are exact, less computationally demanding than finite element methods, and naturally incorporate bidirectional propagation. iv ACKNOWLEDGMENTS I would like to specially thank Dr. Partha Banerjee, for all his help and advice in my studies, for directing this thesis and careful modifications. His patience, time and vast knowledge are the biggest encouragement for me. I would also like to thank my committee members Dr. Joseph Haus and Dr. Andrew Sarangan for their assistance and helpful comments. Additionally, I also would like to thank Dr. Haus for his encouragement, Dr. Qiwen Zhan for his help with literature search, Drs. Sarangan, Bradley Duncan, Peter Powers, John Loomis and Georges Nehmetallah for their great classes. I would also like to express my thanks to Dr. Rola Aylo for all her help on this research. Finally, I would like to thank all in my family for their love, support and encouragement. v TABLE OF CONTENTS ABSTRACT ....................................................................................................... .iv ACKNOWLEDGEMENTS ..................................................................................v TABLE OF CONTENTS .................................................................................... vi LIST OF FIGURES ......................................................................................... .ix LIST OF ABBREVIATIONS AND NOTATIONS ......................................... xiv CHAPTER I. INTRODUCTION ..........................................................................1 1.1 Background .............................................................................................1 1.2 Objective and brief introduction .............................................................2 1.3 Thesis outline ..........................................................................................3 CHAPTER II. UNIDIRECTIONAL BEAM PROPAGATION METHOD ........5 2.1 Introduction .............................................................................................5 2.2 One and two-dimensional Fourier transforms of Gaussian function ......6 2.3 UBPM in a homogeneous medium .........................................................8 2.4 UBPM in an inhomogeneous medium ..................................................14 2.5 Conclusion ............................................................................................19 CHAPTER III. PLANE WAVE PROPAGATION THROUGH AN OPTICAL BOUNDARY ......................................................................................................21 3.1 Introduction ...........................................................................................21 3.2 Plane waves and Snell’s law .................................................................22 3.3 Reflection and transmission of TE and TM waves ...............................25 3.4 Principle of reversibility .......................................................................29 vi 3.5 Conclusion ............................................................................................30 CHAPTER IV. PLANE WAVE PROPAGATION THROUGH MULTILAYER STRUCTURES ...................................................................................................31 4.1 Introduction ...........................................................................................31 4.2 Reflection and transmission coefficients of a thin layer .......................31 4.3 Matrix formulation of TMM for a thin film ..........................................37 4.4 Extension to multilayer system .............................................................39 4.5 Conclusion ............................................................................................45 CHAPTER V. PROPAGATION OF ANGULAR PLANE WAVE SPECTRA THROUGH MULTILAYER STRUCTURES ...................................................47 5.1 Introduction ...........................................................................................47 5.2 Comparison of TMM and FEM for TE plane wave incidence .............48 5.3 Comparison of TMM and FEM for TM plane wave incidence ............50 5.4 Propagation of angular plane wave spectrum through multilayer structure using TMM ..........................................................................54 5.5 TE case: Propagation of a collection of plane waves with Gaussian profile ..................................................................................................55 5.6 TM case: Propagation of a collection of plane waves with Gaussian profile ..................................................................................................59 5.7 Conclusion ............................................................................................63 CHAPTER VI. CONCLUSION AND FUTURE WORK ................................64 BIBLIOGRAPHY ...............................................................................................67 APPENDIX A. MATLAB CODES ....................................................................69 A.1 1_D_FFT_GAUSSIAN.m..................................................................69 A.2 unidirectional_beam_propagation.m ..................................................71 vii A.3 propagation_in_layers_movie.m ........................................................73 A.4 project_BPM.m ..................................................................................75 A.5 multilayerstructureplanewave.m ........................................................77 A.6 layeryehTE.m .....................................................................................79 A.7 TEwave ..............................................................................................81 A.8 layeryehH.m .......................................................................................83 A.9 wave ...................................................................................................85 A.10 TE .....................................................................................................87 A.11 ExEz .................................................................................................89 viii LIST OF FIGURES Figure 2.1. The 1-D amplitude distribution of a Gaussian function. The horizontal axis is in microns, in all Gaussian profile plots in the Chapter, unless other stated ............................................................................................................6 Figure 2.2. Plane wave propagating at angle w.r.t. z ......................................9 Figure 2.3. Gaussian profile before (blue) and after (red) propagation by a distance equal to Rayleigh range ........................................................................10 Figure 2.4. Gaussian profile before (blue) and after (red) propagation by a distance equal to twice the Rayleigh range .........................................................11 Figure 2.5. Initial 2-D Gaussian profile; x-projection .........................................12 Figure2.6. Initial 2-D Gaussian profile, contour view ........................................12 Figure 2.7. Final 2-D Gaussian profile; x-projection ..........................................13 Figure2.8. Final 2-D Gaussian profile, contour view .........................................13 Figure 2.9. Initial 2-D Gaussian profile; x-projection .........................................15 Figure2.10. Final 2-D Gaussian profile at end of 1st medium; x-projection .......15 Figure 2.11. Representative 2-D Gaussian profile within 2nd medium after a short distance of propagation; x-projection .........................................................16 Figure2.12. Representative 2-D Gaussian profile within 2nd medium after a larger distance of propagation; x-projection .......................................................16 Figure2.13. Representative 2-D Gaussian profile a short distance in 3rd medium; x-projection .........................................................................................................17 ix Figure2.14. Representative 2-D Gaussian profile in 3rd medium after longer distance of propagation; x-projection ..................................................................17 Figure 2.15. The refractive index profile of two-slab waveguide .......................18 Figure2.16. Gaussian propagation showing coupling in the two-slab waveguide .............................................................................................................................19 Figure 3.1. Transmitted wavevector and reflected wavevector at a boundary ...23 Figure 3.2. Reflection and transmission scenario for TE case. The electric fields in this figure are directed out of the page for all waves ............................24 Figure 3.3. The transmission coefficient for TE case as a function of the incident angle ......................................................................................................26 Figure 3.4. The reflection coefficient for TE case as a function of the incident angle ....................................................................................................................27 Figure 3.5. The transmission coefficient for TM case as a function of the incident angle ......................................................................................................28 Figure 3.6. The reflection coefficient for TM case as a function of the incident angle ....................................................................................................................29 Figure 4.1. A thin layer of dielectric material .....................................................32 Figure 4.2. Absolute value of reflection coefficient for TE case as a function of the incident angle for single layer structure ........................................................35 Figure 4.3. Absolute value of transmission coefficient for TE case as a function of the incident angle for single layer structure ....................................................35 Figure 4.4. Absolute value of reflection coefficient for the TM case as a function of the incident angle for single layer structure .....................................36 Figure 4.5. Absolute value of transmission coefficient for the TM case as a function of the incident angle for single layer structure .....................................36 x
Description: