ebook img

Transcendental representations with applications to solids and fluids PDF

879 Pages·2012·17.449 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Transcendental representations with applications to solids and fluids

Mathematics and Physics for Science and Technology Mathematics SwT o r i a lt Transcendental Representations with ihn Transcendental Representations d s Applications to Solids and Fluids sAc with Applications to pe a n by L.M.B.C. Campos np dld Solids and Fluids i e c Building on the author’s previous book in the series, Complex Analysis Fan with Applications to Flows and Fields (CRC Press, 2010), Transcendental ltt u ia Representations with Applications to Solids and Fluids focuses on four o i l infinite representations: series expansions, series of fractions for meromorphic dn R functions, infinite products for functions with infinitely many zeros, and s s continued fractions as alternative representations. This book also continues e the application of complex functions to more classes of fields, including tp o incompressible rotational flows, compressible irrotational flows, unsteady flows, r e rotating flows, surface tension and capillarity, deflection of membranes under s load, torsion of rods by torques, plane elasticity, and plane viscous flows. The e two books together offer a complete treatment of complex analysis, showing n how the elementary transcendental functions and other complex functions are t applied to fluid and solid media and force fields mainly in two dimensions. a t i The mathematical developments appear in odd-numbered chapters while o the physical and engineering applications can be found in even-numbered n chapters. The last chapter presents a set of detailed examples. Each chapter s begins with an introduction and concludes with related topics. Written by one of the foremost authorities in aeronautical/aerospace engineering, this self-contained book gives the necessary mathematical background and C physical principles to build models for technological and scientific purposes. a It shows how to formulate problems, justify the solutions, and interpret the m results. p o s L.M.B.C. Campos K11546 K11546_Cover.indd 1 3/8/12 4:52 PM Transcendental Representations with Applications to Solids and Fluids Mathematics and Physics for Science and Technology Series Editor L.M.B.C. Campos Director of the Center for Aeronautical and Space Science and Technology Lisbon Technical University Complex Analysis with Applications to Flows and Fields L.M.B.C. Campos Transcendental Representations with Applications to Solids and Fluids L.M.B.C. Campos Mathematics and Physics for Science and Technology Transcendental Representations with Applications to Solids and Fluids L.M.B.C. Campos Director of the Center for Aeronautical and Space Science and Technology Lisbon Technical University CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2012 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Version Date: 20120301 International Standard Book Number-13: 978-1-4398-3524-1 (eBook - PDF) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material repro- duced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copy- right.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identifica- tion and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com to the memory of António Gouvea Portela TThhiiss ppaaggee iinntteennttiioonnaallllyy lleefftt bbllaannkk Contents List of Tables, Notes, Diagrams, Classifications, Lists, and Examples ................................xxi Series Preface .............................................................................................................................xxix Preface .......................................................................................................................................xxxiii Acknowledgments ...................................................................................................................xxxv Author ......................................................................................................................................xxxvii Mathematical Symbols ...........................................................................................................xxxix Physical Quantities ...................................................................................................................xlvii Introduction .....................................................................................................................................li 1. Sequences of Fractions or Products ....................................................................................1 1.1 Power Series, Singularities, and Functions ...............................................................1 1.1.1 Taylor Series for Analytic Functions .............................................................2 1.1.2 Laurent Series near an Isolated Singularity .................................................2 1.1.3 Classification of Singularities from the Principal Part ...............................3 1.1.4 Coefficients of the Principal Part at a Pole ...................................................4 1.1.5 Pole or Essential Singularity at Infinity ........................................................5 1.1.6 Classification of Functions from Their Singularities ..................................6 1.1.7 Integral Functions as Extensions of Polynomials .......................................6 1.1.8 Exponential and Sine/Cosine as Integral Functions ..................................6 1.1.9 Rational–Integral and Polymorphic Functions ...........................................8 1.1.10 Meromorphic Functions as Extensions of the Rational Functions ...........8 1.1.11 Tangent/Cotangent and Secant/Cosecant as Meromorphic Functions .........9 1.2 Series of Fractions for Meromorphic Functions (Mittag-Leffler 1876, 1884) .......10 1.3 Meromorphic Function as a Ratio of Two Integral Functions ..............................12 1.3.1 Two Cases of Ratios of Integral Functions .................................................12 1.3.2 Series of Fractions for the Circular Secant .................................................13 1.3.3 Series of Fractions for the Circular Cotangent ..........................................14 1.3.4 Extended Theorem on Series of Fractions ..................................................15 1.4 Factorization with Infinite Number of Zeros ..........................................................16 1.4.1 Removal of Poles and Relation with Zeros ................................................16 1.4.2 Theorem on Infinite Products ......................................................................16 1.4.3 Extended Theorem on Infinite Products ....................................................17 1.5 Infinite Products for Circular Functions .................................................................18 1.5.1 Infinite Product for the Circular Cosine .....................................................18 1.5.2 Infinite Product for the Circular Sine .........................................................18 1.5.3 Series of Fractions for Circular Tangent .....................................................19 1.5.4 Series of Fractions for the Circular Cosecant .............................................20 1.5.5 Zeros and Poles of the Circular Tangent ....................................................21 1.6 Recurrence Formulas and Continued Fractions (Wallis 1656; Euler 1737) .........22 1.6.1 Multiple Backward Linear Recurrence Formulas .....................................22 1.6.2 Continuants, Termination, Periodicity, and Convergence .......................23 1.6.3 Recurrence Formula for Numerators and Denominators of Convergents (Wallis 1656; Euler 1737) ........................................................24 vii viii Contents 1.6.4 Differences of Continuants and Odd/Even Commutators ......................25 1.6.5 Continued Fraction for the Algebraic Inverse ...........................................26 1.7 Optimal and Doubly Bounded Sharpening Approximations ..............................27 1.7.1 Error of Truncation for a Continued Fraction of the First Kind ..............27 1.7.2 Convergence/Oscillation of a Continued Fraction of the First Kind .....28 1.7.3 Optimal Rational Approximation for a Simple Continued Fraction ......28 1.7.4 Unique Simple Terminating (Nonterminating) Continued Fraction for a Rational (Irrational) Number ..............................................................29 1.8 Transformation of Series and Products into Fractions (Euler 1785) ....................30 1.8.1 Continued Fraction for a Series (Euler 1748) ..............................................30 1.8.2 Continued Fraction with Given Continuants ............................................31 1.8.3 Continued Fraction for a Product ................................................................32 1.8.4 Continued Fraction for the Exponential .....................................................32 1.8.5 Calculation of the Napier Irrational Number e .........................................33 1.8.6 Continued Fraction (Euler 1739) for the Sine .............................................35 1.8.7 Quadrature of the Circle and the Irrational Number π ............................36 1.9 Continued Fraction for the Ratio of Two Series (Lambert 1770) ..........................37 1.9.1 Convergence of the Hypogeometric Series ................................................38 1.9.2 Integral (Meromorphic) Function of the Variable (Parameter) ...............39 1.9.3 Contiguity Relations and Continued Fractions .........................................40 1.9.4 Terminating and Nonterminating Continued Fractions .........................42 1.9.5 Continued Fraction for the Circular Tangent ............................................43 1.10 Conclusion ....................................................................................................................48 2. Compressible and Rotational Flows .................................................................................49 2.1 Source, Sink, and Vortex in a Compressible Flow ..................................................49 2.1.1 Momentum Equation in an Inviscid Fluid (Euler 1755, 1759) .................50 2.1.2 Potential Flow: Irrotational and Incompressible (Bernoulli 1693) ..........51 2.1.3 Irrotational Flow of a Barotropic Fluid .......................................................52 2.1.4 Bernoulli Equation for a Homentropic Flow .............................................53 2.1.5 Sound Speed as a Flow Variable ..................................................................53 2.1.6 Critical Flow at the Sonic Condition ...........................................................54 2.1.7 Local, Reference, and Critical Mach Numbers ..........................................55 2.1.8 Minimum/Critical Radii for a Vortex in a Homentropic Flow ...............56 2.1.9 Conservation of the Mass Rate for a Source/Sink ....................................58 2.1.10 Combination in a Compressible Spiral Monopole ....................................60 2.2 Potential Vortex with Rotational Core (Rankine; Hallock and Burnham 1997) ..........................................................................................................62 2.2.1 Vorticity Concentrated in a Finite Core (Rankine)....................................62 2.2.2 Smooth Radial Variation of the Vorticity (Hallock and Burnham 1997) .................................................................................................................65 2.2.3 Momentum Equation for an Inviscid Vortex .............................................68 2.2.4 Pressure and Core Radius for a Vortex .......................................................70 2.2.5 Pressure in the Core of the Generalized Rankine Vortex ........................71 2.2.6 Pressure for the Generalized Hallock–Burnham Vortex .........................73 2.2.7 Radial Variation of the Stagnation Pressure ..............................................74 2.2.8 Vorticity and the Gradient of the Stagnation Pressure ............................76 2.2.9 Vortical and Local Inertia Forces .................................................................77 2.2.10 Columnar Vortex in the Gravity Field ........................................................78 Contents ix 2.2.11 Shape of the Free Surface of a Swirling Liquid .........................................79 2.2.12 Free Surfaces, Tornadoes, and Wake Vortices ...........................................80 2.3 Minimum Energy (Thomson 1849) and Intrinsic Equations of Motion..............81 2.3.1 Momentum Equation in Intrinsic Coordinates .........................................81 2.3.2 Vorticity in Terms of Intrinsic Coordinates ...............................................83 2.3.3 Variation of the Stagnation Pressure across Streamlines due to the Vorticity ................................................................................................83 2.3.4 Potential Flow as the Minimum of the Kinetic Energy (Kelvin 1849) .........84 2.4 Laplace/Poisson Equations in Complex Conjugate Coordinates .........................85 2.4.1 Incompressible, Irrotational, and Potential Flows ....................................86 2.4.2 Complex Conjugate Coordinates .................................................................87 2.4.3 General Integral of the Laplace Equation ...................................................88 2.4.4 Complete Integral of the Poisson Equation ................................................89 2.4.5 General/Simple Unidirectional Shear Flow ..............................................90 2.4.6 Complex Conjugate Velocity and Cartesian Components .......................92 2.4.7 Uniform Flow with Angle of Attack ...........................................................93 2.4.8 Relation between Polar and Complex Conjugate Coordinates ...............94 2.4.9 Compound Derivates and Laplacian in Polar Coordinates .....................96 2.4.10 Polar Coordinates and Components of the Velocity .................................97 2.4.11 Potential Vortex, Source/Sink, and Monopole ..........................................98 2.5 Second Forces/Moment and Circle Theorems......................................................100 2.5.1 Forces and Pitching Moment due to the Pressure ..................................100 2.5.2 Forces and Moment in an Incompressible Rotational Flow ..................101 2.5.3 Second Circle Theorem in a Rotational Flow ..........................................103 2.6 Cylinder in a Unidirectional Shear Flow ...............................................................104 2.6.1 Unidirectional Shear Flow with Angle of Attack ...................................105 2.6.2 Free Stream, Vorticity, and Circulation Effects .......................................107 2.6.3 Lift and Shear Forces and Coefficients .....................................................108 2.6.4 Correspondence between the Circulation and the Vorticity .................110 2.7 Monopole Interactions and Equilibrium Positions ..............................................113 2.7.1 Centroid of an Ensemble of Line Monopoles ..........................................114 2.7.2 Radial Motion of a Pair of Sources/Sinks ................................................115 2.7.3 Azimuthal Motion of Two Vortices ...........................................................118 2.7.4 Source/Sink, Vortex, or Monopole near a Wall .......................................122 2.7.5 Pair of Conjugate Monopoles in a Parallel-Sided Duct ..........................126 2.7.6 Boundary Conditions at Rigid Impermeable Walls ................................130 2.7.7 Velocity of the Monopoles between Parallel Walls .................................130 2.7.8 Uniform Convection and Equilibrium at Rest .........................................132 2.7.9 Paths of Vortices, Sources, and Sinks in a Duct.......................................133 2.8 Cylinder in a Stream with Two Trailing Monopoles (Föppl 1913) .....................135 2.8.1 Pair of Conjugate Monopoles as the Wake of a Cylinder .......................137 2.8.2 Rigid Wall Boundary Condition on the Impermeable Cylinder ...........140 2.8.3 Circulation and Flow Rate for Static Equilibrium ..................................141 2.8.4 Direct Equilibrium Problem and Downforce Coefficient ......................143 2.8.5 First Inverse Problem: Pair of Opposite Vortices at Rest (Föppl 1913) ...............................................................................................144 2.8.6 Second Inverse Problem: Pair of Equal Sources/Sinks at Rest ..............147 2.8.7 Comparison of Equilibria for Vortices and Sources/Sinks ....................149 2.8.8 Small Perturbations from Positions of Rest .............................................152

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.