ebook img

Trading Tactics in the Financial Market: Mathematical Methods to Improve Performance PDF

270 Pages·2021·12.894 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Trading Tactics in the Financial Market: Mathematical Methods to Improve Performance

Management for Professionals Don K. Mak Trading Tactics in the Financial Market Mathematical Methods to Improve Performance Management for Professionals Moreinformationaboutthisseriesathttp://www.springer.com/series/10101 Don K. Mak Trading Tactics in the Financial Market Mathematical Methods to Improve Performance DonK.Mak Ottawa,ON,Canada ISSN2192-8096 ISSN2192-810X (electronic) ManagementforProfessionals ISBN978-3-030-70621-0 ISBN978-3-030-70622-7 (eBook) https://doi.org/10.1007/978-3-030-70622-7 #TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringerNatureSwitzerland AG2021 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseof illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similarordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors, and the editorsare safeto assume that the adviceand informationin this bookarebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface I published the book Science of Financial Market Trading in 2003. The idea is to introduce concepts in Physics and techniques in Mathematics to financial market trading,especiallyinthearenaoftechnicalanalysis.Thebookwasquicklyadopted asatextbookforagraduatecourseinmathematicalfinancebyauniversityinUSA, and continually used as a reference in various disciplines in institutes and universities worldwide. Thus, we think that we have forged the right approach— thatsomepeoplewouldliketoseetradingconceptstobeputonasolidscientificand mathematicalground. Nevertheless, other than occasional mentions of some of the ideas presented in the book in trading forums, the concepts were basically ignored in the trading community.Tradingguruscontinuetoadvocatetheirtradingtactics,andhowthey wouldmakeprofits.Traderswouldcontinuetobelievethem,withoutaskingwhythe tacticswouldwork,i.e.,iftheyworkatall. In this book, we expand some of the earlier ideas, and apply them to analyze trading tactics, which we believe are more relevant to the trading community. We would try to explain, by using Fourier Analysis, why some of the indicators and trading tactics would work better than others and why some indicators and trading tactics would perform poorly and should be steered away from. We will start off applying the trading tactics on some dummy artificial data, and then eventually on realmarketdata. Chapter1isanintroductiontoTradingTacticsasrelatedtoTechnicalAnalysis. Chapter2,theMarketTurningPoints,containsthekeyideasinthebook.Itexplains why and when a trading tactic is profitable, and how money can be lost. Fourier Analysis would be employed to divide the frequency spectrum of a technical indicatorintoProfitZoneandLossZone.Datasamplingalsohasasubstantialeffect on profitability, proffering the Profit Zone to be divided into Sure Profit Zone and Unsure ProfitZone.As thetiming ofdata sampling canbe critical, anew concept, calledskippedconvolution,isintroducedtobettertimethemarketturns.Chapter3, Simple Moving Average, discusses how market price data can be smoothed to eliminate the high frequency noise using Simple Moving Average (SMA). The populartradingtactic,thecrossoverofPricewithitsSMA,isanalyzedwithFourier Analysis.TheproblemofthistacticisthatSMAsuffersfromthedisappearanceof some signals at certain frequencies. In Chapter 4, Exponential Moving Average (EMA),anothersmoothingtechnique,isdescribed.Thetradingtactic,thecrossover v vi Preface ofPricewithitsEMA,isanalyzedwithFourierAnalysis.InChapter5,twopopular trading tactics, Awesome Oscillator and Accelerator Oscillator, are examined and theircharacteristicsdetailed.Theproblemwiththesetacticsisthatwrappedphases areusedbytraders, while unwrapped phases shouldhavebeenused.InChapter 6, Moving Average Convergence-Divergence (MACD), a popular tool of the trader, togetherwitharelatedandalsopopularindicator,theMACDHistogram(MACDH), aremathematicallycharacterized.InChapter7,varioustradingtactics,somepopular andsomenotsopopulartotraders,areappliedtorealmarketdata,likeS&P500,the Hang Seng Index, the FTSE100, and the CAC40. Performance of different tactics arecompared.TheresultssomewhatconfirmtheoutcomeoftheFourierAnalysis- why some trading tactics have a higher probability of profitability. Chapter 8, Analysis of the Trading Tactics, discusses the tactics that would be recommended, andthosethatshouldbeavoided.Chapter9istheSummary. Thebookiswrittenforbothtradersandacademics.Minimalmathematicsisused inthemaintext,whichisfilledwithfiguresandtablesforeaseofunderstandingof the concepts presented. Most of the mathematics is put in the appendices for the academics who may want to comprehend the basis of the ideas. The last appendix containsalltheMATLABprogramsusedinthebook.Theprogramswouldbeuseful forreaderswhowouldliketoseehowthecharacteristicsofthetradingtacticswould change by altering the parameters of the indicators. Also, programs analyzing real marketdatawouldallow thedata tobeanalyzedbydifferent trading tactics,aswe cannot possibly put all the examples in the book. As well, readers can substitute otherrealmarketdataintheprogramstogaugetheprofitabilityofthevarioustrading tactics. The book basically analyzes tactics that have mostly been used by traders, and havenotanalyzedsomeofthenewonesproposed(e.g.,Mak2006).Thesewouldbe leftasexercisestothereaders. Hence, for the academics, there are quite a lot of ideas that can be followed up. More research would be needed to substantiate and fine-tune some of the concepts.Andforthetraders,thecurrentideasshouldhelpthemdecidewhattrading tacticstouse,andhopefullymakemoreprofit. Ottawa,ON,Canada DonK.Mak Contents 1 TradingTacticsinTechnicalAnalysis. . . . . . . . . . . . . . . . . . . . . . . 1 1.1 WhyArtificialData?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Evidence-Based. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Science-Based. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Mathematics-Based. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 MarketTurningPoints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 PriceData. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Velocity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 VelocityIndicators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3.1 ProfitZoneandLossZone. . . . . . . . . . . . . . . . . . . . . . . 12 2.4 Sampling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.4.1 SamplingCanAffecttheProfitabilityofaTrade. . . . . . . 12 2.4.2 LossintheProfitZone. . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.4.3 SureProfitZoneandUnsureProfitZone. . . . . . . . . . . . . 19 2.4.4 SkippedConvolution. . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.4.5 ProfitintheLossZone. . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.4.6 Multiplefrequencies. . .. . . .. . . .. . . .. . . .. . . .. . . .. 23 2.5 Acceleration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.6 AccelerationIndicators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3 SimpleMovingAverage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.1 SimpleMovingAverage(SMA). . . . . . . . . . . . . . . . . . . . . . . . 29 3.1.1 SimpleMovingAverage,N¼10. . . . . . . . . . . . . . . . . . 31 3.1.2 SimpleMovingAverage,N¼20. . . . . . . . . . . . . . . . . . 39 3.1.3 SimpleMovingAverage,N¼100. . . . . . . . . . . . . . . . . 42 3.2 TradingTacticsUsingSimpleMovingAverage. . . . . . . . . . . . . 45 3.2.1 Price(cid:2)SimpleMovingAverageofPrice,N¼10. . . . . . 45 3.2.2 Price(cid:2)SimpleMovingAverageofPrice,N¼20. . . . . . 50 3.2.3 Price(cid:2)SimpleMovingAverageofPrice,N¼100. . . . . 53 3.2.4 ComparisonofPrice(cid:2)SimpleMovingAverage ofPrice,N¼10,20and100. . . . . . . . . . . . . . . . . . . . . 55 vviiii viii Contents 4 ExponentialMovingAverage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.1 ExponentialMovingAverage(EMA). . . . . . . . . . . . . . . . . . . . . 57 4.2 TradingTacticsUsingExponentialMovingAverage. . . . . . . . . . 61 4.2.1 Price(cid:2)ExponentialMovingAverageofPrice,M¼3. . . 61 4.2.2 Price(cid:2)ExponentialMovingAverageofPrice,M¼6. . . 64 4.2.3 EMAofPrice,M¼3(cid:2)EMAofPrice,M¼6. . . . . . . . 67 4.2.4 EMAACCEL.. . . . . . .. . . . . . . .. . . . . . . .. . . . . . . .. 69 5 AwesomeOscillatorandAcceleratorOscillator. . . . . . . . . . . . . . . . 73 5.1 AwesomeOscillator(AO). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.2 AcceleratorOscillator(AC). . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6 MovingAverageConvergence-DivergenceandIts Histogram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6.1 MovingAverageConvergence-Divergence(MACD). . . . . . . . . . 85 6.2 MovingAverageConvergence-DivergenceHistogram (MACDH). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.3 MACDH1,MACDHwithPriceReplacingtheFastEMA. . . . . . 92 7 TradingTacticsintheRealMarket. . . . . . . . . . . . . . . . . . . . . . . . 97 7.1 S&P500Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 7.1.1 MACDH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 7.1.2 MACD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 7.1.3 Price(cid:2)EMA3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 7.1.4 FastFourierTransformandInverseFastFourier TransformofS&P500Index. . . . . . . . . . . . . . . . . . . . . . 103 7.2 HangSengIndex. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 7.2.1 Price(cid:2)SMA10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 7.2.2 AwesomeOscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 7.2.3 AcceleratorOscillator. . . . .. . . . . . . . . . . . . . . . . . .. . . 107 7.2.4 FastFourierTransformoftheHangSengindex. . . . . . . . 108 7.3 FTSE100Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 7.3.1 Price(cid:2)EMA6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 7.3.2 MACDH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 7.3.3 FastFourierTransformoftheFTSE100index. . . . . . . . 112 7.4 CAC40Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 7.4.1 MACDH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 7.4.2 MACDH1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 7.4.3 FastFourierTransformofCAC40index. . .. . . . .. . . .. 114 7.5 ComparisonofDifferentTradingTactics. . . . . . . . . . . . . . . . . . 115 8 AnalysisoftheTradingTactics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 8.1 ProfitZoneandLossZone. . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 8.2 Price(cid:2)EMAofPriceComparedtoPrice(cid:2)SMAofPrice. . . . . 119 8.3 AwesomeOscillator(AO)andMovingAverage ConvergenceDivergence(MACD). . . . . . . . . . . . . . . . . . . . . . 122 Contents ix 8.4 AcceleratorOscillator(AC). . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 8.5 MACDH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 8.6 Recommendations. . . .. . . . .. . . . .. . . . .. . . . .. . . . .. . . . .. 123 9 Epilogue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 AppendixA:SureandUnsureProfitandLossZones. . . . . . . . . . . . . . . 127 AppendixB:SimpleMovingAverage. . . . . . . . . . . . . . . . . . . . . . . . . . . 137 AppendixC:ExponentialMovingAverage,MovingAverage Convergence-Divergence. . . . . . . . . . . . . . . . . . . . . . . . . . 141 AppendixD:MATLABPrograms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 Bibliography. . . . . . .. . . . . . .. . . . . . . .. . . . . . .. . . . . . . .. . . . . . .. . 263 Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 1 Trading Tactics in Technical Analysis In financial market trading, technical analysis plays a significant role. Technical analysis bases the buy and sell decisions on market behavior such as price and volume, with price being more important (Mak 2003). The data are quite often plotted in charts. Past financial data would be employed to forecast future market movement. Indicators have been created to operate on series of past financial data. Quite a numberofindicatorshavebeendeveloped,allaimingatillustratingwhatthemarket situationis,andattemptingtoforecastwhatitwillbe.Theyareactuallyequivalentto filters in electrical engineering, or operators in mathematics (Mak 2003). The operator will convolute with the past financial time series to produce another functionindicativeofthestateofthemarketcondition. The terms velocity indicator andaccelerationindicator wereintroduced in2003 (Mak2003),andfurtherexplainedin2006(Mak2006).Thesetermsareborrowed fromthetermsvelocityandaccelerationinPhysics.Theideaistoapplytheconcepts and mathematical techniques in Physics to technical analysis in financial market trading, so as to simplify and clarify the terminology and the trading tactics then used. The terms never caught on (googling the terms did not show these items displayed)untilabout2017.Evenafterthen,whilethetermsusedbysometradersdo conformtothemeaningsinPhysics,therearecaseswheretheymeansomethingelse. Even worse, sometimes the terms used are totally misleading. In one YouTube video,accelerationisusedwhilevelocityshouldhavebeenemployed. In Physics, velocity measures the rate of change of distance over time, and acceleration measures the rate of change of velocity (these definitions have been simplified, as velocity and acceleration in Physics are vector quantities that have directions).Intrading,distanceisreplacedbyprice. Whenpriceisplottedagainsttime,thedatatracesacurve.Therateofchangeof price on the curve can be called the slope of the curve. We will call the slope the velocity,and theslope ofthe slope theacceleration.Whenthe velocity ispositive, #TheAuthor(s),underexclusivelicensetoSpringerNatureSwitzerlandAG2021 1 D.K.Mak,TradingTacticsintheFinancialMarket,ManagementforProfessionals, https://doi.org/10.1007/978-3-030-70622-7_1

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.