ebook img

Towards the elimination of Monte Carlo statistical fluctuation from dose volume histograms for ... PDF

27 Pages·1999·0.59 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Towards the elimination of Monte Carlo statistical fluctuation from dose volume histograms for ...

Phys.Med.Biol.45(2000)131–157.PrintedintheUK PII:S0031-9155(00)06802-0 Towards the elimination of Monte Carlo statistical fluctuation from dose volume histograms for radiotherapy treatment planning JosepSempau†‡andAlexFBielajew† †DepartmentofNuclearEngineeringandRadiologicalSciences,TheUniversityofMichigan, AnnArbor,Michigan,USA ‡InstitutdeTe`cniquesEnerge`tiques,UniversitatPolite`cnicadeCatalunya,Diagonal647, 08028Barcelona,Spain Received9August1999 Abstract. TheMonteCarlocalculationofdoseforradiotherapytreatmentplanningpurposes introduces unavoidable statistical noise into the prediction of dose in a given volume element (voxel).Whenthedosesinthesevoxelsaresummedtoproducedosevolumehistograms(DVHs), thisnoisetranslatesintoabroadeningofdifferentialDVHsandcorrespondinglyflatterDVHs. Abruteforceapproachwouldentailcalculatingdoseforlongperiodsoftime—enoughtoensure thattheDVHshadconverged.Inthispaperweintroduceanapproachfordeconvolvingthestatistical noisefromDVHs,therebyobtainingestimatesforconvergedDVHsobtainedabout100timesfaster thanthebruteforceapproachdescribedabove.Therearetwoimportantimplicationsofthiswork: (a)decisionsbaseduponDVHsmaybemademuchmoreeconomicallyusingthenewapproachand (b)inversetreatmentplanningoroptimizationmethodsmayemployMonteCarlodosecalculations atallstagesoftheiterativeproceduresincetheprohibitivecostofMonteCarlocalculationsatthe intermediatecalculationstepscanbepracticallyeliminated. (Somefiguresinthisarticleappearincolourintheelectronicversion;seewww.iop.org) 1. Introduction Withtheadventofaffordablehigh-speedcomputersandthedevelopmentoffasterMonteCarlo based algorithms (Neuenschwander and Born 1992, Neuenschwander et al 1995, Keall and Hoban1996a,b,Kawrakowetal1996,Sempauetal2000),theMonteCarlo(MC)methodis becominganimportanttoolformedicalphysicistsperformingphotonandelectrontreatment planningforradiotherapycancertreatment(Bielajew1994,1995,Mohan1997). Theinformationprovidedbyatreatmentplanningsystemcanberepresentedgraphically inavarietyofdifferentforms,forexampleisodoselinesanddosevolumehistograms(DVHs). GivenatargetvolumeV withinapatient’sbodyandcertainirradiationconditions,theDVH, say p.x/, is defined such that p.x/dx equals the fraction of V with a dose in the interval [x;x+dx]. Thus,theDVHdefinestheprobabilitydensityfunction(PDF)offindingadosex inV. TheintegralDVH Z x F.x/D dx0p.x0/ (1) 0 is also an important representation, since F.x / − F.x / represents the fraction of V that 2 1 receivesadosebetweenx andx . 1 2 0031-9155/00/010131+27$30.00 ©2000IOPPublishingLtd 131 132 JSempauandAFBielajew DVHshavebeenusedasatesttocomparetheaccuracyandperformanceofMCcodes (Hartmann-Siantaretal1997). Tothisend,thepatient’sgeometry,includingthetargetvolume, is divided into voxels as provided by CT or MRI scans. Voxels are normally shaped as rectangular boxes with a square base with characteristic lengths of the order of millimetres. As the particle transport simulation is carried out, the dose in each voxel is scored in an accumulator. Whenasufficientnumberofparticlehistorieshasbeenprocessed,thecalculation stops and each voxel is assigned to a dose bin, to which it contributes with a count. The histogram of counts in the different bins corresponds to the discretization of the underlying continuousPDF,p.x/. Wenotethatthediscretizationisperformedbothinspace(voxels)and indose(bins). The remainder of the paper is organized as follows. In section 2 we give a general discussionofthestatisticalnoiseinthecalculateddoseinavoxel. Insection2.1weprovide a general proof that the variance of the dose is proportional to the dose and argue that the distribution of dose should be distributed according to a Gaussian. We demonstrate in section 2.2 that calculated DVHs and true (or converged) DVHs, those produced after an infinitenumberofparticlehistorieshavebeensimulated,arerelatedbyaFredholmequation of the first kind, an integral equation that yields the calculated (finite number of particle histories) DVH after integration over the true DVH and a ‘response function’, the Gaussian derivedinsection2.1. Insection2.3wetestourGaussianresponsemodelanddemonstrateits usefulnessandinsection2.4wefindpracticallowerlimitsofthenumberofhistoriesforwhich themodelcanbeemployedaswellasadeterminationofthenumberofhistoriesrequiredto ensureconvergenceofthecalculatedDVHs. Insection3wedevelopadeconvolutionmethod thatallowsustoestimatetheconvergedDVHfromanapproximateDVHobtainedwithorder- of-magnitudefewerparticlehistories. Insection4weshowhowthenewmethodperformson avarietyoftestcasesbeforetheconclusions. 2. MonteCarlogeneratedstatisticalnoise 2.1. Dosevarianceinavoxel Letussuppose,asisusuallythecase,thatMCsimulationsarecarriedoutwiththetransport ofelectronsandpositronsturnedon,eitherbecausetheyaretheprimaryparticlesorbecause theyareproducedwhenphotonsinteractwithmatter. Inanycase,thisimpliesthatallenergy depositionsareactuallymadebychargedparticles. Forthesakeofbrevity,wewillreferonlyto electronshereafter,sincepositrontransportinvolvessimilarmethodsexceptforthepossibility ofannihilation,whichdoesnotimplyanydirectenergydeposition. VariousofthecurrentlyavailableMCcodesrelyon‘mixed’schemestosimulateelectron energy losses (Nelson et al 1985, Baro´ et al 1995, Sempau et al 2000). The basic idea is to separate inelastic interactions into two categories, depending on whether the energy lost is above (hard) or below (soft) some threshold, E . Hard events are simulated in a cut detailed way, that is, they are processed one at a time. Soft events, on the contrary, are simulated in a condensed way, which means that many soft interactions are accumulated in a single fictitious event. Delta rays are generated only by hard events and therefore energy losses larger than E involve the generation of secondary particles but no deposition on cut the spot. This motivates the definition of the restricted stopping power, S , or mean energy r lost per unit step length for energy losses below E . For the majority of applications, cut including radiotherapy, it is plausible to set E equal to the absorption energy, E , cut abs below which electrons are considered to be absorbed and their kinetic energy deposited locally. Dosevolumehistogramsforradiotherapytreatmentplanning 133 MC calculations provide an exact solution to the Boltzmann transport equation except forthefluctuationsinherentintherandomnatureofthemethod. Thesefluctuationsmaybe made arbitrarily small by simulating a sufficiently large number of particle histories. Let x be the dose deposited per primary particle in a given voxel when the number of simulated particlehistoriesisinfinite,thatis,whentherearenostatisticalfluctuations,andlet1V and (cid:26) bethevoxelvolumeandaveragedensityrespectively. Aftercompletionofafinitenumber ofhistories,N,theaveragedosex definedasthequotientbetweentheMCsimulatedenergy depositionperhistory,1E=N,andthevoxelmass,(cid:26)1V,isanunbiasedestimatorofx. A voxel will be said to have been ‘hit’ when an electron, either primary or secondary, traverses it. Hereafter, n and (cid:15) stand for the random variables representing the number of hits produced in a given voxel and the energy deposited by a particle that hits this voxel, respectively. As1Eandconsequentlyx arerandomvariables,theyhaveanassociatedmean andvariance. Toinvestigatethesequantities,considerxexpressedintermsofnand(cid:15),namely P 1 1E 1 n (cid:15) x (cid:17) D iD1 i (2) N (cid:26)1V N (cid:26)1V where(cid:15) istheenergydepositedbytheithhit. i Forvoxelsizesoftheorderofsomemillimetres,theprobabilityofobservingamultiple hit on a single voxel is small compared with the probability of the voxel receiving a single hit,P. Hence,nfollowsapproximatelyabinomialdistributionwithN trials. Moreover,for broadbeams,suchasthosefoundinradiotherapyapplications,P issmallforthemajorityof voxelsandNP isratherlarge. Theseconsiderationsleadtotheconclusionthatthebinomial distributionofncanbeapproximatedbyaGaussianwithvariance,(cid:27)2.n/,givenby (cid:27)2.n/Dhni: (3) Ifnisdistributedaccordingtoabinomialdistribution,itisshownintheappendixthat (cid:28) (cid:29) Xn (cid:15) Dhnih(cid:15)i: (4) i iD1 Thatistosay,theaveragevalueoftheenergydepositedinavoxelisgivenbytheproductof theaveragenumberofhitsmultipliedbytheaverageenergydepositionperhitonthevoxel. Thisallowsequation(2)tobewrittenas hni h(cid:15)i hxiD (cid:17)x (5) N (cid:26)1V wherewehaveredefinedxtomakethenotationalittlelesscumbersome. Intheappendixitis alsoproventhat (cid:18) (cid:19) Xn (cid:27)2 (cid:15) Dhni(cid:27)2.(cid:15)/+h(cid:15)i2(cid:27)2.n/ (6) i iD1 indicating that the variance of the Monte Carlo estimated energy deposition in the voxel originatesfromthetwodistributedquantities,nand(cid:15). Substitutingfromequation(3)resultsin (cid:18) (cid:19) Xn (cid:27)2 (cid:15) Dhni.(cid:27)2.(cid:15)/+h(cid:15)i2/Dhnih(cid:15)2i (7) i iD1 whichleadstoanexpressionfortheestimatedvarianceofthedoseinthevoxel hnih(cid:15)2i x h(cid:15)2i (cid:27)2.x/D D : (8) N2(cid:26)21V2 N1V (cid:26)h(cid:15)i 134 JSempauandAFBielajew 3 ) g m/2 2 c V e M ( r S/r 1 0 0 4 8 12 16 20 Energy (MeV) Figure1. Restrictedmassstoppingpowerforwater(fullcurve),bone(shortdashedcurve)and air(longdashedcurve). Ecut wassetto200keV.Datahavebeenobtainedfromthepreparation programassociatedwiththeDPMcode(Sempauetal2000). We note that only energy losses due to soft collisions are involved in the distribution of (cid:15). Theenergystragglingduetothesesoftcollisions,whichaccountsforadispersionin(cid:15) when electronswithidenticalinitialconditionstravelagivenpathlength,canbeneglectedforlengths equal to 1 mm or larger. This ‘continuous slowing down approximation’ (CSDA) has been adoptedsuccessfully(RogersandBielajew1990)formanymedicalphysicsapplicationsby theEGS4MonteCarlocode(Nelsonetal1985),foranypathlength. Massrestrictedstopping powers(S =(cid:26))formaterialsrelevanttoradiotherapyapplicationshaveaverysmallvariation r withenergy,exceptatlowenergies,andarefairlyindependentofthematerialaswell. Thisis seeninfigure1. ItisplausibletoapproximateS =(cid:26) byaconstantvalueforallvoxelsinthe r estimateofthevarianceofthedosetoavoxel. Takingtheseapproximationsintoaccount (cid:18) (cid:19) S (cid:15) D(cid:26) r ‘ (9) (cid:26) where‘standsforthepathlengthtraversedthroughavoxel. Consequently,equation(8)can berewrittenas (cid:18) (cid:19) x S h‘2i .S =(cid:26)/(cid:17) (cid:27)2.x/D r Dx r (10) N1V (cid:26) h‘i N1V2=3 wherethedimensionlessparameter 1 h‘2i (cid:17)(cid:17) (11) 1V1=3 h‘i can,inprinciple,changefromvoxeltovoxeldependingonthevoxelshapeandonthedegree ofisotropyoftheradiationfieldatthevoxellocation. Forallpracticalradiotherapysituations,however,(cid:17)hasaveryrestrictedrangeofvariation and can be considered as approximately constant inside the target volume. To justify this assertionitwillbeconsideredthat,duetothevoxelsmallness,electronstravelalongalmost straightlinesandthatparticlefluxishomogeneousinsideagivenvoxel. Thus,h‘2i,h‘iand then (cid:17) can be readily obtained by means of an MC numerical integration for any radiation Dosevolumehistogramsforradiotherapytreatmentplanning 135 field. Usingthisapproach,wefindformonodirectionalbeamsandcubicvoxels,that(cid:17)spans theinterval[0:86;1:00]asthebeamdirectionchanges. Asanyelectronradiationfieldcanbe thoughtofasacontinuoussuperpositionofmonodirectionalbeams,(cid:17)isboundedbythesame intervalforanyfield. Inpractice,collimatedradiationcomingoutofanacceleratorheadwillenterthepatient’s geometry nearly parallel to a voxel face, say z D 0 where the z-axis is directed along the patient’s body. This includes the cases in which the direction is normal to x D 0 or y D 0 (whichgives(cid:17)D1),oritgoesalongthediagonal(1,1,0)((cid:17)D0:94). Aselectronspenetrate deeperintothepatient,theelectronangulardistributionbecomesprogressivelymoreisotropic as the kinetic energy decreases and the electrons scatter. For a completely isotropic field, (cid:17)D0:90. Itisinterestingtonotethat,intheisotropiccase,themeanvalueof‘equals4V=S foranyregionofvolumeV limitedbyaconvexsurface†ofareaS. Whentheregionisacube withunitside,h‘iD4V=S D2=3. Hence, (cid:17) is likely to have values close to 1 in the region where the radiation enters the patient’sbodyandprogressivelydecreaseuntilnearlyreachingtheisotropicvalue0.90atthe end of the electron range. Taking into account that target volumes cover only a fraction of the region where radiation is transported, it is clear that this range of variation will usually be further limited. Moreover, the decrease in (cid:17) may somewhat compensate for the increase in S =(cid:26) at low energies, keeping the product even less sensitive to variations across voxels. r Alltheseconsiderationsjustifytheplausibilityoftheassumptionthat(cid:17) maybetreatedasa constant. Takingthisassumptionintoaccount,equation(10)canberecastas C (cid:27)2.x/Dx (12) N wheretheparameter .S =(cid:26)/(cid:17) C (cid:17) r (13) 1V2=3 isaconstantforagiventarget. Thisequationdemonstratesthattheestimateofthevariance in dose in a voxel is approximately proportional to the dose itself, inversely proportional to thenumberofhistoriesandinverselyproportionaltothevoxelsurface. Fromthecentrallimit theorem(Lindeberg1922,Feller1967)itcanbeconcludedthat,whenthenumberofsimulated historiesislargeenough,x hasaGaussiandistribution. Forthesakeofnotationalsimplicity, thequantity(cid:27).x/willbedenotedby(cid:27).x/hereafter. Itisimportanttonoticethatwhenelectrontransportisturnedoffsothatphotoninteractions produceenergydepositionsonthespot,equation(9)lossesitsvalidityandtheexpressionfor (cid:27).x/ is no longer applicable. This is due to the fact that, in this case, (cid:27).(cid:15)/ comprises the fluctuationsof‘and thefluctuationsoftheenergydepositedbyphotonsalongagivenpath. Thesecondcontributioncanbemadenegligibleforphotonsaswellbyusinginteractionforcing orsomeequivalentmethodandthevalidityoftheformeranalysiscanberestored. Astudyof theinfluenceofvariancereductiontechniquesonthepresentmodelwillnotbepursuedherein. It suffices to say that equation (12) seems unlikely to hold in general when non-analogue methods are applied unless all particles entering any voxel carry similar statistical weights, whichwillthenappearasamultiplicativefactorinequation(12)modifyingthevalueofC. † Everyelementofsurfaceareamustbeabletobejoinedtoanyothersurfaceelementbyanuninterruptedstraight line. 136 JSempauandAFBielajew 0.05 0.05 N=105 N=106 0.04 0.04 V) V) e 0.03 e 0.03 k k g/ g/ DF ( 0.02 DF ( 0.02 P P 0.01 0.01 0 0 0 40 80 120 160 0 40 80 120 160 dose (keV/g) dose (keV/g) 0.05 0.05 N=107 N=108 0.04 0.04 V) V) e 0.03 e 0.03 k k g/ g/ DF ( 0.02 DF ( 0.02 P P 0.01 0.01 0 0 0 40 80 120 160 0 40 80 120 160 dose (keV/g) dose (keV/g) Figure2. MCsimulatedDVHsfor10MeVelectronsimpingingnormallyonawaterphantom formedby128(cid:2)128(cid:2)1281mm3 cubicvoxels. Theelectronfieldonthewatersurfacewas collimatedtoa5(cid:2)5cm2square.Thetargetvolumewasdefinedasafield-centredparallelepiped of4(cid:2)4(cid:2)2cm3,withtheshortestdistanceinthedirectionoftheincidentbeamandlocated between2and4cmunderthewatersurface.Thedosebinwidthwasroughly1%ofthefullscale. DifferentcasescorrespondtodifferentnumbersofhistoriesN. 2.2. DVHconvolution The statistical ‘noise’ produced by the fluctuation of x about its mean can have a profound effect on the DVH. An ideal calculation of the dose in each voxel would reproduce its true value, say y, and the corresponding true DVH, which will be represented by p. The MC simulation represents such an ideal only when the number of histories, N, tends to infinity. ForfiniteN,thecalculateddosex fluctuatesaboutitsmeany withthevariance(cid:27)2 givenby equation(12). Consequently,theMCcalculatedDVH,pQ,maydifferfromp. Letusdefinearesponsefunctiong.xIy/suchthatg.xIy/dx givestheprobabilitythat a voxel with a true dose y yields a measure in the interval [x;x +dx] for a given value of N. TheMCcalculatedfractionofvoxelswithadoseinthissameintervalispQ.x/dx. This fraction includes contributions from voxels that have a true dose y not in the interval under consideration, but that have been associated with it by virtue of the statistical fluctuations. Withthisinterpretationofg,pQ andparerelatedby Z pQ.x/D dyp.y/g.xIy/ (14) D withDrepresentingthedomainwherep.y/ 6D 0. Consideringg andpQ asknownquantities, theformerisaFredholmequationofthefirstkind(ArfkenandWeber1995)intheunknownp. Dosevolumehistogramsforradiotherapytreatmentplanning 137 N=105 0.02 V) e k g/ ( DF 0.01 P 0 0 40 80 120 160 dose (keV/g) Figure3. DVHsobtainedwithDPM(fullcurve)andPenelope(dashedcurve)for105histories. Source,targetandphantomarethesameasinfigure2. Alternatively,g.xIy/canbeviewedastheMCcalculatedpQobtainedwhentheunderlying pcorrespondstoadeltafunctioncentredaty,thatis,whenthedosesdepositedinthedifferent voxelsofthetargetvolumehaveexactlythesameexpectedvaluey. Accordingtoequation(12), thisimpliesthatallthevoxelshavenearlythesamedepositeddosePDF,aGaussiancentred aty withavariancegivenbythatequation. Therefore,fromthispointofviewitisclearthat g.xIy/isalsorepresentedbythissameGaussian,namely s (cid:18) (cid:19) (cid:18) (cid:19) 1 .x−y/2 N N.x−y/2 g.xIy/D p exp − D exp − : (15) (cid:27).y/ 2(cid:25) 2(cid:27)2.y/ 2(cid:25)Cy 2yC AsN tendstoinfinity,(cid:27) tendstozero,g.xIy/collapsesintoadeltafunction,(cid:14).x−y/,and pQ convergestop,whichwillbecalledtheconvergedDVHhereafter. Forvaluesofy much largerthanC=N,g.xIy/canbeapproximatedbyafunctionof.x−y/onlyandtheFredholm equation (14) becomes a familiar convolution integral. Although in practical situations this limitmaynotbeattained,thetermconvolutionwillberetainedtodesignatetheprocessthat transformspintopQ. The effect of this convolution is to make pQ wider than p. Since the variance decreases withincreasingN,thiswideningisexpectedtobesignificantatrelativelysmallvaluesofN. Infigure2acomparisonofDVHsobtainedforthesameconditionsbutwithdifferentnumber ofhistoriespresented. EvenforthesamevalueofN,differentmechanismsofsimulatingsoft energylossescanproducedifferentvaluesofCandthusyieldapparentlydifferentDVHs. For instance,inhomogeneousmedia,electronstepscanbetakenindependentlyofvoxelboundaries andsoftenergylossesproducedalongagivensteplengthcanbedepositedatsomepointchosen randomlyontheelectronpath. Thismeansthatalltheenergylostinastepisdepositedinonly one voxel, irrespective of the number of them that have been traversed. (This is the current schemeadoptedinthePenelopecode.) Alternatively,theparticlecanbestoppedeverytimeit crossesavoxelboundary,inwhichcasesomeenergydepositionisobtainedeverytimeavoxel ishit. (ThisisthecurrentschemeadoptedintheDPMcode.) Givenasufficientnumberof histories,bothmethodsproducethecorrectmeanvalue,buttheirvariancesaredifferent. The Penelope scheme produces a larger variance. Our analysis strictly applies only to the DPM approach. However, when DVH convergence is employed to compare the reliability of MC codesthesubtletiesmustbeproperlytakenintoaccount. 138 JSempauandAFBielajew Figure3presentsanexampleofthisdanger. TwodifferentMCcodes,DPMandPenelope, are used to calculate a DVH in water. These codes have shown very good agreement in calculationsofdepthandlateraldoseinwaterphantoms. Surprisinglyenough,thetwoDVHs present significant differences for the same number of histories. The reason is that, in this particularcase,Penelope’senergy-depositionmodelislessefficientthanDPM’s. Itisimportanttorealizethattheeffectoftheconvolutionisessentiallydifferentfromthe customary MC uncertainty that appears in the form of error bars, e.g. in the calculation of depthdoseprofiles. Inthiscase,uncertaintiesproduceonlyfluctuationsoftheMCcalculated datapointsinthedirectionoftheordinateaxisandthereforetheycanbedenotedwithvertical errorbars. Incontrast,theconvolutionofDVHsisaprocessinwhichtheuncertaintyofthe doseinavoxelaffectstheabscissavaluethatwillbeassignedtoit. Hence,thisuncertaintyis horizontal. The convolution of DVHs is a phenomenon somewhat analogous to the response of a scintillationdetector,wherethespectrumofthedepositedenergyisconvolvedwitharesponse function, analogous to the action of the integral in equation (14), to produce the spectrum actually measured. In this case, the fluctuations in the light yield and the response of the photoelectrictubeareresponsibleforthenearlyGaussianshapeoftheresponsefunction,which also has a width roughly proportional to the deposited energy. In contrast to the scintillator case,however,thewidthoftheresponsefunctioncanbechangedintheprocessofcalculating aDVHbychangingthenumberofhistoriessimulatedorthevoxeldimensions. 2.3. Testingthemodel Inthissectionwepresentsomeresultsintendedtoclarifythemeaningofthemodelintroduced aboveandverifyitsaccuracy. AllofthemhavebeenobtainedwithanewMCcodecalledDPM (Sempauetal2000),anacronymforDosimetryPlanningMethod. DPMisbasedonthephysics contained in EGS4 plus some newer developments intended to improve electron multiple scattering and thus speed up the simulations considerably. It is optimized for radiotherapy applications,andinthetestsperformedsofarithasbeenfoundtoagreetowithabout3%with otherwell-knownstandardcodes. However,theinaccuraciesthatDPMoranyotherMCcode may have are irrelevant here, for what is being investigated refers to the basic nature of the MCmethod. Inordertoverifytheaccuracyoftheapproximationsleadingtoequation(12),thevariance ofthedepositeddose,x,hasbeencalculatedusingMCmethodsforeachvoxel. Astheabscissa, ordoseaxis,x,oftheDVHisdividedintoanumberofequispacedbins,ameanvariancefor each bin can be obtained by averaging this quantity over all voxels falling within the bin. Fittingastraightlinetothedatapointsrepresenting(cid:27)2versusxyieldsavalueoftheconstant C andthethevalidityofthelinearfitcanbejudged. Thevarianceofeachindividualvoxel,(cid:27)2,canbeestimatedusing (cid:20)P (cid:18)P (cid:19)(cid:21) 1 N x2 N x 2 (cid:27)2 ’ iD1 i − iD1 i (16) N N N wherex representsthedosescoredinthevoxelduringthesimulationoftheithhistoryand i N isthenumberofhistoriessimulated. Inprinciple,tocarryoutthesumsinthenumerators, threedifferentcounters,sayxtmp,xscoreandx2scoremustbedefined. xtmpaccumulates theindividualenergydepositionsproducedbyalltheparticlesofonlyPoneshower. Oncethe shower is completed, its value is addePd to xscore, which contains xi, and its square is added to x2score, which represents x2. Then xtmp is set to zero before a new shower i starts. Althoughthissimpleprocedurerepresentsaninsignificantcomputationalcostforthe Dosevolumehistogramsforradiotherapytreatmentplanning 139 0.20 0.16 2 g) V/ e 0.12 k ( e c n 0.08 a ari v 0.04 0.00 30 40 50 60 70 80 90 100 dose (keV/g) Figure4. Thevarianceindoseforthesamearrangementasinfigure2andN D 108. Dots represent‘experimental’MCdataandthefulllineisalinearfitofthetype(cid:27)2 D xC=N. The valueofthefittingparameterCandthecorrelationcoefficientare181:6MeVg−1andrD0:9998 respectively. majorityofMCcalculations,thisisnottrueforradiotherapyapplicationssincethenumberof countersisthreeforeachvoxel,andthetotalnumbermayamounttomanymillions. Accessing thecomputermemoryaftereachhistorycanslowdowntheexecutionofthecoderendering thecalculationinfeasible. Toovercomethisdifficulty,weemployedthefollowingmethod†. Wedefineacounter,say ihist,thatidentifiesthecurrentshowerhistory. Thenoveltyofthemethodconsistsinusing an integer label, saylast, for each voxel in addition to the three counters described above. lastidentifiesthelastshowerthatcontributedtothevoxelbystoringitsihistvalue. Every timethereisadeposition(cid:15)inagivenvoxel,thecurrentihistiscomparedwithlast. Ifthey match, thedepositionisaddedtothetemporarycounterxtmp. Iftheydiffer, xtmpisadded toxscore,itssquareisaddedtox2score,thetemporarycounterxtmpissetto(cid:15) andlast isupdatedtothecurrentihist. Thiscountingmechanismensuresthateverytimeashower contributestoavoxel,thecontributionfromanyformershowerhasbeenstoredcorrectly. The simulationtimeisnotseverelyaffected,becausethenewmethodinvolvesonlyanadditional ifeverytimeadepositionismade,plusanadditionalarraytostoretheintegerlabellastfor eachvoxel. Acalculationofvarianceispresentedasafunctionofthedosex infigure4. Ourmodel, equation(12),predictsalinearvariation,ingoodagreementwithwhatitisobserved. SincetheGaussianshapeofgisrelatedtothevalidityofequation(12),whichstatesthat allvoxelswiththesamedosehavethesamevariance,atestofthemodelconsistsincalculating thedispersionofthisvariance. SupposethatK ofthevoxelsinthetargetvolumehappento beinacertaindosebin. Consideringtheirvariances(cid:27)2withk D1:::K asasampleofsome k population,thequantity (cid:20)P (cid:18)P (cid:19)(cid:21) K (cid:27)4 (cid:27)2 2 s2.f(cid:27)2 g/D k − k (17) kD1:::K K −1 K K isameasureofthedispersioninthevariance. † WeareindebtedtoProfessorFrancescSalvatoftheUniversityofBarcelonaforsupplyinguswiththeideaforthis method. 140 JSempauandAFBielajew 10 8 105 ) % ( 6 2 s)/ 2 4 106 s( s 2 107 108 0 0 40 80 120 160 dose (keV/g) Figure5.Relativedispersionofthevariancefordifferentnumberofhistories,N. 3 ) g 2/ 2 m c V e M ( se 1 o d target 0 0 1 2 3 4 5 6 depth (cm) Figure6. Theaxialdepth-doseprofileforthesameproblemconditionsasinfigure2. Thetwo verticaldashedlinesindicatethelocationofthetargetvolumeandthehorizontaldashedlinesets thelimitthatdividesthetargetareaintworegions,onewithaone-to-onecorrespondencebetween depthanddose(belowthehorizontaldashedline)andtheotherwithatwo-to-onecorrespondence (abovethehorizontaldashedline). Figure 5 presents the dispersion of the variance as a function of the dose. The small relative dispersion seen validates, at least for this particular arrangement, the premise upon whichequation(15)wasderived. NotethatasN increasestherelativedispersionstopsdecreasingindicatingthattheDVH hasconvergedandhence,thefluctuationsbecometoosmalltomovevoxelstoneighbouring dose bins. The bump observed at high doses in the cases 107 and 108 for a dose around 85 keV g−1 can also be understood as a consequence of the model. Figure 6 shows the depth dose curve for the problem under consideration. For doses below a certain limit, the correspondencebetweendoseanddepthissuchthattoeachdosetherecorrespondsonlyone depth. Abovethislimit,however,everydosecorrespondstotwopossibledepths,onedeeper thanthepointwherethemaximumoccursandtheotheratashallowerdepth. Thesetworegions

Description:
MC calculations provide an exact solution to the Boltzmann transport .. the former is a Fredholm equation of the first kind (Arfken and Weber 1995) in the . Salvat of the University of Barcelona for supplying us with the idea for this .. As a result, the DVH shows a shoulder next to the main peak,
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.