Description:This volume presents a broad introduction to the topological fixed point theory of multivalued (set-valued) mappings, treating both classical concepts as well as modern techniques. A variety of up-to-date results is described within a unified framework. Topics covered include the basic theory of set-valued mappings with both convex and nonconvex values, approximation and homological methods in the fixed point theory together with a thorough discussion of various index theories for mappings with a topologically complex structure of values, applications to many fields of mathematics, mathematical economics and related subjects, and the fixed point approach to the theory of ordinary differential inclusions. The work emphasises the topological aspect of the theory, and gives special attention to the Lefschetz and Nielsen fixed point theory for acyclic valued mappings with diverse compactness assumptions via graph approximation and the homological approach. Audience: This work will be of interest to researchers and graduate students working in the area of fixed point theory, topology, nonlinear functional analysis, differential inclusions, and applications such as game theory and mathematical economics.