ebook img

Topics in quantum measurement and quantum noise PDF

118 Pages·1998·0.873 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Topics in quantum measurement and quantum noise

8 TOPICS IN 9 9 QUANTUM MEASUREMENT AND QUANTUM NOISE 1 t c O 6 2 v 5 1 0 By 0 1 8 9 h/ Kurt Jacobs p - t n a u q : v i X A thesis submitted to the University of London for the degree of Doctor of Philosophy r a The Blackett Laboratory Imperial College June 1998 AnIndianandawhitemanfelltotalking. Thewhite man drew a circle in the sand and a larger circle to surround it. “See”, he said, pointing to the small circle “that is what the Indian knows, and that”, pointing to the larger circle, “is what the white man knows.” The Indian was silent for many minutes, and then slowlyhepointedwithhisarmtotheeastandturned and waved to the west. “And that, white man”, he said, “is what neither of us knows”. ii Acknowledgments I wouldlike to thank Prof. P. L. Knightfor his supervision,patience and encouragementduring the entire length of my PhD research, and for providing helpful comments and suggestions on my thesis drafts. Working in the quantum optics group at Imperial College has been both challenging andenjoyable. I wouldliketo thankalsothe manycolleagueswithwhomIhaveworkedthroughout my time here, in particular Vlatko Vedral, Mike Rippin, Sougato Bose and MartinPlenio. Working with them has been a pleasure and a privilege. I would also like to thank Howard Wiseman, Gerd Breitenbach, Ilkka Tittonen, Sze Tan and Andrew Doherty. Their suggestions and advice, albeit mainly at a distance, was nevertheless valuable and greatly appreciated. Therearemanyfriendswhohavecontributedtomytimehereinwaysincalculable. Inparticular I would like to thank Peter,Nat, Nick, Brody and Dave for being there in spirit, and Mike, Brooke, Elaine,RysandJaimieforbeingthereinperson. Veryspecialthanksgoto myparents,Sandra,Ian and Lorraine, for always being there. Iwouldalsolike tothank the AssociationofCommonwealthUniversitiesforthe Commonwealth Scholarship which allowed me to study in England, and the New Zealand Vice-Chancellors’ Com- mitteefortheEdward&IsabelKidsonScholarshipandtheL.B.WoodTravellingScholarship,both of which provided very useful additional support for travel. iii List of Publications For this thesis I have selected from among my research those publications primarily concerned with quantum measurement theory. In the following chronologicallist, those on which this thesis is based are asterisked. 1. K.Jacobs,P.Tombesi,M.J.CollettandD.F.Walls,‘AQNDMeasurementofPhotonNumber using Radiation Pressure’, Phys. Rev. A 49, 1961, (1994). 2. G. J. Milburn, K. Jacobs and D. F. Walls,‘Quantum Limited Measurements with the Atomic Force Microscope’, Phys. Rev. A 50, 5256 (1994). 3. K. Jacobs, M. J. Collet, H. M. Wiseman, S. M. Tan and D. F. Walls,‘Force Measurement via Dark State Cooling’, Phys. Rev. A 54, 2260 (1996). 4. *K.JacobsandP.L.Knight,‘ConditionalProbabilitiesforaSinglePhotonataBeamSplitter’, Phys Rev. A 54, R3738 (1996). 5. K.Jacobs,‘A Model for the Production of Regular FluorescentLight fromCoherently Driven Atoms’, J. of Mod. Optics 44, 1475 (1997). 6. *K.Jacobs,P.L. KnightandV.Vedral, ‘Determining the State ofa Single CavityMode from Photon Statistics’, J. of Mod. Optics, 44, 2427 (1997). 7. S. Bose, K. Jacobs and P. L. Knight, ‘Preparation of non-classical states in a cavity with a moving mirror’, Phys Rev. A 56, 4175 (1997). 8. V. Vedral, M. B. Plenio,K. Jacobsand P. L. Knight,‘Statistical Inference, Destinguishability of Quantum States, and Quantum Entanglement’, Phys Rev. A 56, 4452 (1997). 9. *K. Jacobs and P. L. Knight, ‘Linear Quantum Trajectories: Applications to Continuous Projection Measurements’, Phys. Rev. A 57, 2301 (1998). 10. S. Bose, K. Jacobs and P. L. Knight, ‘A Scheme to Probe the Decoherence of a Macroscopic Object’, (in submission). 11. *I. Tittonen, K. Jacobs and H. M. Wiseman, ‘Quantum noise in the position measurement of a cavity mirror undergoing Brownian motion’, (in submission). iv Abstract In this thesis we consider primarily the dynamics of quantum systems subjected to continuous observation. Inthe Schr¨odingerpicture the evolutionof a continuouslymonitoredquantumsystem, referredtoasa‘quantumtrajectory’,maybedescribedbyastochasticequationforthestatevector. We present a method of deriving explicit evolution operators for linear quantum trajectories, and apply this to a number of physical examples of varying mathematical complexity. In the Heisenberg picture evolution resulting from continuous observation may be described by quantumLangevinequations. We usethis methodto calculatethe noisespectrumthatresultsfrom acontinuousobservationofthepositionofamovingmirror,andexaminethepossibilityofdetecting the noise resulting from the quantum back-action of the measurement. In addition to the work on continuous measurement theory, we also consider the problem of reconstructingthe state of a quantum systemfrom a set of measurements. We present a scheme for determining the state of a single cavity mode from the photon statistics measured both before and after an interaction with one or two two-level atoms. v vi Contents Acknowledgments iii List of Publications iv Abstract v List of Figures ix 1 Introduction 1 1.1 Overview of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Quantum Mechanics and Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1 Breaking the Rules of Probability Theory . . . . . . . . . . . . . . . . . . . . 2 1.2.2 Entanglement and Decoherence . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.3 Entanglement and Generalised Measurements . . . . . . . . . . . . . . . . . . 7 1.2.4 Entanglement and Non-Locality . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3 Open Quantum Systems: Master Equations . . . . . . . . . . . . . . . . . . . . . . . 10 1.4 Open Quantum Systems: Quantum Trajectories. . . . . . . . . . . . . . . . . . . . . 12 1.4.1 Direct Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.4.2 Homodyne Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.4.3 Other Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.4.4 A Continuous Measurement of Position . . . . . . . . . . . . . . . . . . . . . 17 2 Quantum Trajectories and Quantum noise 21 2.1 Stochastic Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.1.1 The Wiener Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.1.2 The PoissonProcess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.2 Quantum Trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.2.1 Quantum Trajectories and Generalised Measurements . . . . . . . . . . . . . 26 2.2.2 Linear and Non-linear Formulations . . . . . . . . . . . . . . . . . . . . . . . 28 2.3 Quantum Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3 Evolution Operators for Linear Quantum Trajectories 35 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.2 The Wiener Process: General Method . . . . . . . . . . . . . . . . . . . . . . . . . . 36 vii 3.2.1 A QND Measurement of Photon-Number . . . . . . . . . . . . . . . . . . . . 37 3.2.2 A Measurement of Momentum in a Linear Potential . . . . . . . . . . . . . . 39 3.2.3 A Quadrature Measurement with a General Quadratic Hamiltonian . . . . . 42 3.2.4 An Open Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.3 Extension to the PoissonProcess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.3.1 A Damped Cavity with Coherent Driving . . . . . . . . . . . . . . . . . . . . 47 3.3.2 A Damped Cavity with a Kerr Non-linearity . . . . . . . . . . . . . . . . . . 50 3.4 Possibilities for Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4 Quantum Noise in a Cavity with a Moving Mirror 53 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.2 The System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.3 Phase Modulation Detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.4 Solving the System Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.5 The Power Spectral Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.5.1 Comparison with Standard Brownian Motion . . . . . . . . . . . . . . . . . . 64 4.5.2 Comparison with Homodyne Detection. . . . . . . . . . . . . . . . . . . . . . 64 4.5.3 The Error in a Measurement of Position . . . . . . . . . . . . . . . . . . . . . 64 4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 5 Determining the State of a Single Cavity Mode 69 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.2 Preliminary Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.3 Measuring quantum states with a one-atom interaction. . . . . . . . . . . . . . . . . 74 5.4 Measuring quantum states with a two-atom interaction. . . . . . . . . . . . . . . . . 76 5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6 Conclusion 79 A An Introduction to the Input-Output Relations 81 A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 A.2 The Lagrangianand Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 A.2.1 The Standard Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 A.2.2 The Input-Output Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . 84 A.2.3 The Hamiltonian and Quantisation . . . . . . . . . . . . . . . . . . . . . . . . 87 A.3 Input and Output Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 A.4 Input-Output Relations for a Damped Cavity . . . . . . . . . . . . . . . . . . . . . . 92 B Exponentials of P and Q 95 C Atomic Detection Probabilities 99 Bibliography 102 viii List of Figures 3.1 Conditional uncertainty for a QND measurement of photon-number. . . . . . . . . . 39 4.1 A driven optical cavity with a moving mirror . . . . . . . . . . . . . . . . . . . . . . 56 4.2 Error in a position measurement of a moving cavity mirror . . . . . . . . . . . . . . 66 A.1 A small system interacting with an external field which extends from x = 0 out to infinity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 ix x

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.