ebook img

Topics in Fractional Differential Equations PDF

402 Pages·2012·2.791 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Topics in Fractional Differential Equations

Developments in Mathematics VOLUME 27 SeriesEditors: KrishnaswamiAlladi,Universityof Florida Hershel M.Farkas,HebrewUniversityofJerusalem Robert Guralnick,UniversityofSouthernCalifornia Forfurthervolumes: http://www.springer.com/series/5834 Sa¨ıd Abbas (cid:129) Mouffak Benchohra Gaston M. N’Gue´re´kata Topics in Fractional Differential Equations 123 Sa¨ıdAbbas MouffakBenchohra LaboratoiredeMathe´matiques LaboratoiredeMathe´matiques Universite´deSa¨ıda Universite´deSidiBel-Abbe`s Sa¨ıda,Algeria SidiBel-Abbe`s Algeria GastonM.N’Gue´re´kata DepartmentofMathematics MorganStateUniversity Baltimore,MD,USA ISSN1389-2177 ISBN978-1-4614-4035-2 ISBN978-1-4614-4036-9(eBook) DOI10.1007/978-1-4614-4036-9 SpringerNewYorkHeidelbergDordrechtLondon LibraryofCongressControlNumber:2012941498 Mathematics Subject Classification (2010): 26A33, 34A60, 34A37, 39A12, 34A37, 39A12, 34A60, 34B15,26A33,34K05 ©SpringerScience+BusinessMediaNewYork2012 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Wededicatethisbooktoourfamilymembers. Inparticular,Sa¨ıdAbbasdedicatestothe memoryofhisfather,tohismother,his wife ZoubidaandhischildrenMourad,Amina, andIlyes;MouffakBenchohramakes his dedicationto thememoryof hisfatherYahia BenchohraandGastonN’Gue´re´kata tothe memoryofhisfatherJean N’Gue´re´kata. Preface Fractionalcalculus(FC)generalizesintegralsandderivativestonon-integerorders. Duringthe last decade,FC was foundto play a fundamentalrole in the modeling of a considerable number of phenomena, in particular, the modeling of memory- dependent phenomena and complex media such as porous media. FC emerged as an important and efficient tool for the study of dynamical systems where classical methods reveal strong limitations. This book is devoted to the existence anduniquenessofsolutionsforvariousclassesofDarbouxproblemforhyperbolic differential equations or inclusions involving the Caputo fractional derivative, the best fractional derivative of the time. Some equations present delay which may be finite, infinite, or state-dependent. Others are subject to impulsive effect. The toolsused includeclassical fixedpointtheoremsas wellassharp(new)onessuch as the one by Dhage on ordered Banach algebras and the fixed point theorem for contraction multivalued maps due to Covitz and Nadier, as well as some generalizations of the Gronwall’s lemma. Each chapter concludes with a section devotedtonotesandbibliographicalremarksandallabstractresultsareillustrated byexamples. The content of this book is new and complements the existing literature in fractionalcalculus. It is useful for researchers and graduate students for research, seminars, and advanced graduate courses, in pure and applied mathematics, engi- neering,biology,andallotherappliedsciences. We owe a great deal to R.P. Agarwal, L. Go´rniewicz, J. Henderson,J.J. Nieto, B.A. Slimani, J.J. Trujillo, A.N. Vityuk, and Y. Zhou for their collaboration in research related to the problems considered in this book. We express our vii viii Preface appreciationto ProfessorGeorgeAnastassiouwhostronglysupportedourproject. Finally,wethanktheeditorialassistanceofSpringer,especiallyElizabethLoewand JacobGallay. Sa¨ıda,Algeria S.Abbas SidiBel-Abbe`s,Algeria M.Benchohra Baltimore,Maryland,USA G.M.N’Gue´re´kata Contents 1 Introduction .................................................................. 1 2 PreliminaryBackground.................................................... 11 2.1 NotationsandDefinitions ............................................. 11 2.2 PropertiesofPartialFractionalCalculus ............................. 12 2.3 PropertiesofSet-ValuedMaps........................................ 18 2.4 FixedPointTheorems................................................. 21 2.5 GronwallLemmas..................................................... 23 3 PartialHyperbolicFunctionalDifferentialEquations................... 25 3.1 Introduction............................................................ 25 3.2 PartialHyperbolicDifferentialEquations............................ 25 3.2.1 Introduction.................................................... 25 3.2.2 ExistenceofSolutions ........................................ 26 3.2.3 AnExample.................................................... 32 3.3 PerturbedPartialDifferentialEquations.............................. 33 3.3.1 Introduction.................................................... 33 3.3.2 ExistenceofSolutions ........................................ 33 3.3.3 AnExample.................................................... 39 3.4 NeutralPartialDifferentialEquations................................ 40 3.4.1 Introduction.................................................... 40 3.4.2 ExistenceofSolutions ........................................ 40 3.4.3 AnExample.................................................... 46 3.5 DiscontinuousPartialDifferentialEquationsinBanachAlgebras.. 47 3.5.1 Introduction.................................................... 47 3.5.2 ExistenceofSolutions ........................................ 47 3.5.3 ExistenceofExtremalSolutions ............................. 51 3.5.4 AnExample.................................................... 55 3.6 UpperandLowerSolutionsMethodforPartialHyperbolic DifferentialEquations................................................. 56 3.6.1 Introduction.................................................... 56 3.6.2 MainResult.................................................... 56 ix x Contents 3.7 PartialFunctionalDifferentialEquationswithInfiniteDelay....... 60 3.7.1 Introduction.................................................... 60 3.7.2 ThePhaseSpaceB ........................................... 60 3.7.3 MainResults................................................... 62 3.7.4 AnExample.................................................... 71 3.8 PartialHyperbolicDifferentialEquationswithState-Dependent Delay................................................................... 73 3.8.1 Introduction.................................................... 73 3.8.2 ExistenceofSolutionsforFiniteDelay...................... 74 3.8.3 ExistenceofSolutionsforInfiniteDelay..................... 83 3.8.4 Examples....................................................... 94 3.9 GlobalUniquenessResultsforPartialHyperbolicDifferential Equations............................................................... 98 3.9.1 Introduction.................................................... 98 3.9.2 GlobalResultforFiniteDelay................................ 100 3.9.3 GlobalResultforInfiniteDelay .............................. 105 3.9.4 Examples....................................................... 112 3.10 NotesandRemarks.................................................... 114 4 PartialHyperbolicFunctionalDifferentialInclusions................... 115 4.1 Introduction............................................................ 115 4.2 PartialHyperbolicDifferentialInclusions............................ 115 4.2.1 Introduction.................................................... 115 4.2.2 TheConvexCase.............................................. 116 4.2.3 TheNonconvexCase.......................................... 121 4.2.4 AnExample.................................................... 124 4.3 ExistenceResultsforPartialHyperbolicDifferentialInclusions.... 125 4.3.1 Introduction.................................................... 125 4.3.2 ExistenceofSolutions ........................................ 125 4.3.3 QualitativePropertiesandTopologicalStructure oftheSolutionSet............................................. 130 4.4 UpperandLowerSolutionsMethodforPartialDifferential Inclusions .............................................................. 143 4.4.1 Introduction.................................................... 143 4.4.2 MainResult.................................................... 144 4.5 PartialFunctionalDifferentialInclusionswithInfiniteDelay....... 150 4.5.1 Introduction.................................................... 150 4.5.2 MainResults................................................... 150 4.5.3 AnExample.................................................... 159 4.6 FractionalOrderRiemann–LiouvilleIntegralInclusions withtwoIndependentVariablesandMultipleTimeDelay.......... 159 4.6.1 Introduction.................................................... 159 4.6.2 ExistenceofSolutions ........................................ 160 4.6.3 AnExample.................................................... 168 4.7 NotesandRemarks.................................................... 169 Contents xi 5 ImpulsivePartialHyperbolicFunctionalDifferentialEquations ...... 171 5.1 Introduction............................................................ 171 5.2 ImpulsivePartialHyperbolicFunctionalDifferentialEquations.... 171 5.2.1 Introduction.................................................... 171 5.2.2 ExistenceofSolutions ........................................ 172 5.2.3 AnExample.................................................... 178 5.3 ImpulsivePartialHyperbolicDifferentialEquationsatVariable Times................................................................... 179 5.3.1 Introduction.................................................... 179 5.3.2 ExistenceofSolutions ........................................ 179 5.3.3 NonlocalImpulsivePartialDifferentialEquations .......... 186 5.3.4 AnExample.................................................... 187 5.4 ImpulsiveDiscontinuousPartialHyperbolicDifferential EquationsonBanachAlgebras........................................ 188 5.4.1 Introduction.................................................... 188 5.4.2 ExistenceofSolutions ........................................ 189 5.4.3 ExistenceofExtremalSolutions ............................. 193 5.4.4 AnExample.................................................... 198 5.5 ImpulsivePartialHyperbolicDifferentialEquations withVariableTimesandInfiniteDelay............................... 199 5.5.1 Introduction.................................................... 199 5.5.2 MainResult.................................................... 200 5.5.3 AnExample.................................................... 209 5.6 ImpulsivePartialHyperbolicFunctionalDifferentialEquations ofFractionalOrderwithState-DependentDelay .................... 211 5.6.1 Introduction.................................................... 211 5.6.2 ImpulsivePartialDifferentialEquationswithFinite Delay........................................................... 212 5.6.3 ImpulsivePartialDifferentialEquationswithInfinite Delay........................................................... 215 5.6.4 Examples....................................................... 220 5.7 ImpulsivePartialHyperbolicFunctionalDifferentialEquations withVariableTimesandState-DependentDelay .................... 222 5.7.1 Introduction.................................................... 222 5.7.2 ImpulsivePartialDifferentialEquationswithFinite Delay........................................................... 223 5.7.3 ImpulsivePartialDifferentialEquationswithInfinite Delay........................................................... 231 5.7.4 Examples....................................................... 241 5.8 UpperandLowerSolutionsMethodforImpulsivePartial HyperbolicDifferentialEquations.................................... 243 5.8.1 Introduction.................................................... 243 5.8.2 MainResult.................................................... 244 5.9 NotesandRemarks.................................................... 249 xii Contents 6 ImpulsivePartialHyperbolicFunctionalDifferentialInclusions ...... 251 6.1 Introduction............................................................ 251 6.2 ImpulsivePartialHyperbolicDifferentialInclusions................ 251 6.2.1 Introduction.................................................... 251 6.2.2 TheConvexCase.............................................. 252 6.2.3 TheNonconvexCase.......................................... 259 6.2.4 AnExample.................................................... 263 6.3 ImpulsivePartialHyperbolicDifferentialInclusions withVariableTimes ................................................... 265 6.3.1 Introduction.................................................... 265 6.3.2 ExistenceofSolutions ........................................ 265 6.3.3 AnExample.................................................... 275 6.4 TheMethodofUpperandLowerSolutionsforPartial HyperbolicFractionalOrderDifferentialInclusions withImpulses.......................................................... 276 6.4.1 Introduction.................................................... 276 6.4.2 MainResult.................................................... 277 6.5 NotesandRemarks.................................................... 285 7 ImplicitPartialHyperbolicFunctionalDifferentialEquations......... 287 7.1 Introduction............................................................ 287 7.2 DarbouxProblemforImplicitDifferentialEquations ............... 287 7.2.1 Introduction.................................................... 287 7.2.2 Riemann–LiouvilleandCaputoPartialFractional Derivatives..................................................... 288 7.2.3 ExistenceofSolutions ........................................ 289 7.2.4 AnExample.................................................... 294 7.3 AGlobalUniquenessResultforImplicitDifferentialEquations ... 295 7.3.1 Introduction.................................................... 295 7.3.2 ExistenceofSolutions ........................................ 295 7.3.3 AnExample.................................................... 298 7.4 FunctionalImplicitHyperbolicDifferentialEquations withDelay ............................................................. 299 7.4.1 Introduction.................................................... 299 7.4.2 ExistenceResultswithFiniteDelay.......................... 300 7.4.3 ExistenceResultsforInfiniteDelay ......................... 305 7.4.4 ExistenceResultswithState-DependentDelay ............. 308 7.4.5 Examples....................................................... 312 7.5 DarbouxProblemforImplicitImpulsivePartialHyperbolic DifferentialEquations................................................. 316 7.5.1 Introduction.................................................... 316 7.5.2 ExistenceofSolutions ........................................ 316 7.5.3 AnExample.................................................... 325

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.