ebook img

Topics in Chromatic Graph Theory PDF

387 Pages·2015·4.927 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Topics in Chromatic Graph Theory

TopicsinChromaticGraphTheory Chromaticgraphtheoryisathrivingareathatusesvariousideasof‘colouring’(ofvertices,edges,etc.)to exploreaspectsofgraphtheory.Ithaslinkswithotherareasofmathematics,includingtopology,algebra andgeometry,andisincreasinglyusedinsuchareasascomputernetworks,wherecolouringalgorithms formanimportantfeature. Whileotherbookscoverportionsofthematerial,noothertitlehassuchawidescopeasthisone,in whichacknowledgedinternationalexpertsinthefieldprovideabroadsurveyofthesubject.All15 chaptershavebeencarefullyedited,withuniformnotationandterminologyappliedthroughout.Bjarne Toft(Odense,Denmark),widelyrecognizedforhissubstantialcontributionstothearea,actedas academicconsultant. Thebookservesasavaluablereferenceforresearchersandgraduatestudentsingraphtheoryand combinatoricsandasausefulintroductiontothetopicformathematiciansinrelatedfields. lowell w. beineke isSchreyProfessorofMathematicsatIndianaUniversity–PurdueUniversity FortWayne(IPFW),wherehehasworkedsincereceivinghisPh.D.fromtheUniversityofMichigan undertheguidanceofFrankHarary.Hisgraphtheoryinterestsincludetopologicalgraphtheory,line graphs,tournaments,decompositionsandvulnerability.Hehaspublishedover100papersingraphtheory andhasservedaseditoroftheCollegeMathematicsJournal.WithRobinWilsonhehasco-editedfive booksinadditiontothethreeearliervolumesinthisseries.Recenthonoursincludeanawardinstitutedin hisnamebytheCollegeofArtsandSciencesatIPFWandaCertificateofMeritoriousServicefromthe MathematicalAssociationofAmerica. robin j. wilson isEmeritusProfessorofPureMathematicsattheOpenUniversity,UK,and EmeritusProfessorofGeometryatGreshamCollege,London.AftergraduatingfromOxford,hereceived hisPh.D.innumbertheoryfromtheUniversityofPennsylvania.Hehaswrittenandco-editedmany booksongraphtheoryandthehistoryofmathematics,includingIntroductiontoGraphTheory,Four ColorsSufficeandCombinatorics:Ancient&Modern.Hiscombinatorialresearchinterestsformerly includedgraphcolouringsandnowfocusonthehistoryofcombinatorics.Anenthusiasticpopularizerof mathematics,hehaswontwoawardsforhisexpositorywritingfromtheMathematicalAssociationof America. ENCYCLOPEDIAOFMATHEMATICSANDITSAPPLICATIONS AllthetitleslistedbelowcanbeobtainedfromgoodbooksellersorfromCambridgeUniversity Press.Foracompleteserieslistingvisitwww.cambridge.org/mathematics. 109 J.M.BorweinandJ.D.VanderwerffConvexFunctions 110 M.-J.LaiandL.L.SchumakerSplineFunctionsonTriangulations 111 R.T.CurtisSymmetricGenerationofGroups 112 H.Salzmannetal.TheClassicalFields 113 S.PeszatandJ.ZabczykStochasticPartialDifferentialEquationswithLe´vyNoise 114 J.BeckCombinatorialGames 115 L.BarreiraandY.PesinNonuniformHyperbolicity 116 D.Z.ArovandH.DymJ-ContractiveMatrixValuedFunctionsandRelatedTopics 117 R.Glowinski,J.-L.LionsandJ.HeExactandApproximateControllability forDistributedParameter Systems 118 A.A.BorovkovandK.A.BorovkovAsymptoticAnalysisofRandomWalks 119 M.DezaandM.DutourSikiric´GeometryofChemicalGraphs 120 T.NishiuraAbsoluteMeasurableSpaces 121 M.PrestPurity,SpectraandLocalisation 122 S.KhrushchevOrthogonalPolynomialsandContinuedFractions 123 H.NagamochiandT.IbarakiAlgorithmicAspectsofGraphConnectivity 124 F.W.KingHilbertTransformsI 125 F.W.KingHilbertTransformsII 126 O.CalinandD.-C.ChangSub-RiemannianGeometry 127 M.Grabischetal.AggregationFunctions 128 L.W.BeinekeandR.J.Wilson(eds.)withJ.L.GrossandT.W.TuckerTopicsinTopologicalGraphTheory 129 J.Berstel,D.PerrinandC.ReutenauerCodesandAutomata 130 T.G.FaticoniModulesoverEndomorphismRings 131 H.MorimotoStochasticControlandMathematicalModeling 132 G.SchmidtRelationalMathematics 133 P.KornerupandD.W.MatulaFinitePrecisionNumberSystemsandArithmetic 134 Y.CramaandP.L.Hammer(eds.)BooleanModelsandMethodsinMathematics,ComputerScience,and Engineering 135 V.Berthe´andM.Rigo(eds.)Combinatorics,AutomataandNumberTheory 136 A.Krista´ly,V.D.RaˇdulescuandC.VargaVariationalPrinciplesinMathematicalPhysics,Geometry,and Economics 137 J.BerstelandC.ReutenauerNoncommutativeRationalSerieswithApplications 138 B.CourcelleandJ.EngelfrietGraphStructureandMonadicSecond-OrderLogic 139 M.FiedlerMatricesandGraphsinGeometry 140 N.VakilRealAnalysisthroughModernInfinitesimals 141 R.B.ParisHadamardExpansionsandHyperasymptoticEvaluation 142 Y.CramaandP.L.HammerBooleanFunctions 143 A.Arapostathis,V.S.BorkarandM.K.GhoshErgodicControlofDiffusionProcesses 144 N.Caspard,B.LeclercandB.MonjardetFiniteOrderedSets 145 D.Z.ArovandH.DymBitangentialDirectandInverseProblemsforSystemsofIntegralandDifferential Equations 146 G.DassiosEllipsoidalHarmonics 147 L.W.BeinekeandR.J.Wilson(eds.)withO.R.OellermannTopicsinStructuralGraphTheory 148 L.Berlyand,A.G.KolpakovandA.NovikovIntroductiontotheNetworkApproximationMethod forMaterialsModeling 149 M.BaakeandU.GrimmAperiodicOrderI:AMathematicalInvitation 150 J.Borweinetal.LatticeSumsThenandNow 151 R.SchneiderConvexBodies:TheBrunn–MinkowskiTheory(SecondEdition) 152 G.DaPratoandJ.ZabczykStochasticEquationsinInfiniteDimensions(SecondEdition) 153 D.Hofmann,G.J.SealandW.Tholen(eds.)MonoidalTopology 154 M.CabreraGarc´ıaandA´.Rodr´ıguezPalaciosNon–AssociativeNormedAlgebrasI:TheVidav–Palmerand Gelfand–NaimarkTheorems 155 C.F.DunklandY.XuOrthogonalPolynomialsofSeveralVariables(SecondEdition) 156 L.W.BeinekeandR.J.Wilson(eds.)withB.ToftTopicsinChromaticGraphTheory 157 T.MoraSolvingPolynomialEquationSystemsIII:AlgebraicSolving 158 T.MoraSolvingPolynomialEquationSystemsIV:Buchberger’sTheoryandBeyond Above:FrancisGuthrie,whoproposedthefour-colourproblem,andKennethAppeland WolfgangHaken,whosolvedit.Below:GerhardRingel(right)andTedYoungs,whosolved theHeawoodconjecture.(CourtesyofRobinWilson.) Topics in Chromatic Graph Theory Editedby LOWELL W. BEINEKE IndianaUniversity–PurdueUniversity FortWayne ROBIN J. WILSON TheOpenUniversity andtheLondonSchoolofEconomics AcademicConsultant BJARNE TOFT UniversityofSouthernDenmark,Odense UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learningandresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781107033504 (cid:2)c CambridgeUniversityPress2015 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2015 PrintedintheUnitedKingdombyClays,StIvesplc AcataloguerecordforthispublicationisavailablefromtheBritishLibrary LibraryofCongressCataloguinginPublicationdata Topicsinchromaticgraphtheory/editedbyLowellW.Beineke, IndianaUniversity-PurdueUniversity,FortWayne,RobinJ.Wilson, TheOpenUniversityandtheLondonSchoolofEconomics; academicconsultant,BjarneToft,UniversityofSouthernDenmark,Odense. pages cm.–(Encyclopediaofmathematicsanditsapplications;156) Includesbibliographicalreferences. ISBN978-1-107-03350-4(Hardback) 1. Graphcoloring–Dataprocessing. 2. Graphtheory–Dataprocessing. I. Beineke,LowellW.,editor. II. Wilson,RobinJ.,editor. QA166.247.T672015 511(cid:3).56–dc23 2014035297 ISBN978-1-107-03350-4Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyof URLsforexternalorthird-partyinternetwebsitesreferredtointhispublication, anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. Contents ForewordbyBjarneToft pagexiii Preface xv Preliminaries 1 LOWELLW.BEINEKEandROBINJ.WILSON 1. Graphtheory 1 2. Graphcolourings 9 1 Colouringgraphsonsurfaces 13 BOJANMOHAR 1. Introduction 13 2. Planargraphsare4-colourableand5-choosable 14 3. Heawood’sformula 18 4. Colouringwithfewcolours 20 5. Gro¨tzsch’stheoremanditsgeneralizations 23 6. Colouring–flowduality 25 7. Theacyclicchromaticnumber 29 8. Degeneratecolourings 30 9. Thestarchromaticnumber 31 10. Summary 32 2 Brooks’stheorem 36 MICHAELSTIEBITZandBJARNETOFT 1. Introduction 36 2. ProofsofBrooks’stheorem 37 3. Criticalgraphswithfewedges 41 4. Boundingχ by(cid:3)andω 45 5. Graphswithχ closeto(cid:3) 48 6. Notes 50 viii Contents 3 Chromaticpolynomials 56 BILLJACKSON 1. Introduction 56 2. Definitionsandelementaryproperties 57 3. Logconcavityandotherinequalities 59 4. Chromaticroots 60 5. Relatedpolynomials 64 4 Hadwiger’sconjecture 73 KEN-ICHIKAWARABAYASHI 1. Introduction 73 2. Completegraphminors:earlyresults 74 3. Contraction-criticalgraphs 75 4. Algorithmicaspectsoftheweakconjecture 79 5. Algorithmicaspectsofthestrongconjecture 81 6. Theoddconjecture 82 7. IndependentsetsandHadwiger’sconjecture 85 8. Othervariantsoftheconjecture 86 9. Openproblems 89 5 Edge-colourings 94 JESSICAMCDONALD 1. Introduction 94 2. ElementarysetsandKempechanges 96 3. Tashkinovtreesandupperbounds 97 4. TowardstheGoldberg–Seymourconjecture 101 5. Extremegraphs 103 6. Theclassificationproblemandcriticalgraphs 105 7. Thedichotomyofedge-colouring 108 8. Finalthoughts 109 6 List-colourings 114 MICHAELSTIEBITZandMARGITVOIGT 1. Introduction 114 2. Orientationsandlist-colourings 118 3. Planargraphs 121 4. Precolouringextensions 128 5. Notes 129 7 Perfectgraphs 137 NICOLASTROTIGNON 1. Introduction 137 Contents ix 2. Lova´sz’sperfectgraphtheorem 139 3. Basicgraphs 141 4. Decompositions 142 5. Thestrategyoftheproof 146 6. BookfromtheProof 148 7. Recognizingperfectgraphs 151 8. Bergetrigraphs 152 9. Evenpairs:ashorterproofoftheSPGT 154 10. Colouringperfectgraphs 155 8 Geometricgraphs 161 ALEXANDERSOIFER 1. Thechromaticnumberoftheplane 161 2. Thepolychromaticnumber:lowerbounds 162 3. ThedeBruijn–Erdo˝sreductiontofinitesets 165 4. Thepolychromaticnumber:upperbounds 167 5. Thecontinuumof6-colourings 169 6. Specialcircumstances 171 7. Spaceexplorations 172 8. Rationalspaces 173 9. Oneoddgraph 175 10. Influenceofsettheoryaxioms 175 11. Predictingthefuture 177 9 Integerflowsandorientations 181 HONGJIANLAI,RONGLUOandCUN-QUANZHANG 1. Introduction 181 2. Basicproperties 183 3. 4-flows 185 4. 3-flows 185 5. 5-flows 187 6. Boundedorientationsandcircularflows 188 7. Moduloorientationsand(2+1/t)-flows 190 8. Contractibleconfigurations 191 9. Relatedproblems 194 10 Colouringrandomgraphs 199 ROSSJ.KANGandCOLINMCDIARMID 1. Introduction 199 2. Denserandomgraphs 202 3. Sparserandomgraphs 208 4. Randomregulargraphs 214

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.