ebook img

Tire Science and Technology 1996: Vol 24 Index PDF

9 Pages·1996·1.6 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Tire Science and Technology 1996: Vol 24 Index

Tire Science and Technolgy Index to Volume 24 1996 Months Pages 1-92 Jan.—Mar. 93-182 Apr.—Jun. 183-276 Cho, C.-T.: see Han, I.-S., Chung, Jul.—Sep. Oct.—Dec. 277-374 C.-B., Kim, J.-H., Kim, S.-J., Chung, H.-C., Cho, C.-T., and Oh, S.-C. A Chung, C.-B.: see Han, L.-S., Chung, C.-B., Kim, J.-H., Kim, Abe, A.: see Nakajima, Y., S.-J., Chung, H.-C., Cho, C.-T., Kamegawa, T., and Abe, A. and Oh, S.-C. Abe, A., Kamegawa, T., and Chung, H.-C.: see Han, L-S., Nakajima, Y.: Optimum Chung, C.-B., Kim, J.-H., Kim, Young’s modulus distribution S.-J., Chung, H.-C., Cho, C.-T., in tire design, Jul.-Sep., 204 and Oh, S.-C. Akasaka, T.: see Shiobara, H., Computational models Akasaka, T., and Kagami, S. Computational models for Aligning moment multilayered composite shells A free-rolling cornering test for with application to tires heavy-duty truck tires (Kulikov), Jan.—Mar., 11 (Pottinger, Pelz, Tapia, and Contact pressure Winkler), Apr.—Jun., 153 Two-dimensional contact pressure distribution of a radial tire in motion (Shiobara, Akasaka, and Kagami), Oct.—Dec., 294 Cord end transitions Belt model End effects in twisted cord- Analytical comments on radial rubber composites (Padovan), tire nonuniformity (Koutny), Oct.—Dec., 321 Apr.—Jun., 132 Cord-rubber composites Torsional analysis of a steel cord- Torsional analysis of a steel cord- rubber tire belt structure rubber tire belt structure (Pidaparti), Oct.—Dec., 339 (Pidaparti), Oct.—Dec., 339 Buschmann, J.: Pass-by noise Cornering measurement with a noise- Finite element analysis of a isolated car, Jan.—Mar., 2 quasi-static rolling tire model 368 TIRE SCIENCE & TECHNOLOGY for determination of truck tire E forces and moments (Goldstein), Oct.—Dec., 278 Ebbott, T. G.: An application of Crack finite element-based fracture An application of finite element- mechanics analysis to cord- based fracture mechanics rubber structures, Jul.—Sep., analysis to cord-rubber 220 structures (Ebbott), Jul.—Sep., 220 Cure kinetics Predictive model for reversion- type cures (Rimondi, Toth, and Kounavis), Jan.—Mar., 77 Fatigue Cure model An application of finite element- Predictive model for reversion- based fracture mechanics type cures (Rimondi, Toth, and analysis to cord-rubber Kounavis), Jan.—Mar., 77 structures (Ebbott), Jul.—Sep., Cure reaction kinetics 220 Dynamic simulation of the tire Finite element analysis curing process, (Han, Chung, An application of finite element- Kim, Kim, Chung, Cho, and based fracture mechanics Oh), Jan.—Mar., 50 analysis to cord-rubber Curing process structures (Ebbott), Jul.—Sep., Dynamic simulation of the tire 220 curing process, (Han, Chung, Development of a 60-series self- Kim, Kim, Chung, Cho, and supporting tire (Willard), Jul.— Oh), Jan.—Mar., 50 Sep., 236 Dynamic simulation of the tire D curing process, (Han, Chung, Kim, Kim, Chung, Cho, and Daniel, I. M.: see Wang, T.-M., Oh), Jan.—Mar., 50 Daniel, I. M., and Huang, K. End effects in twisted cord- Durability rubber composites (Padovan), An application of finite element- Oct.—Dec., 321 based fracture mechanics Finite element analysis of a analysis to cord-rubber quasi-static rolling tire model structures (Ebbott), Jul.—Sep., for determination of truck tire 220 forces and moments Dynamic simulation (Goldstein), Oct.—Dec., 278 Dynamic simulation of the tire Optimum Young’s modulus curing process, (Han, Chung, distribution in tire design (Abe, Kim, Kim, Chung, Cho, and Kamegawa, and Nakajima), Oh), Jan.-Mar., 50 Jul.—Sep., 204 VOLUME 24 INDEX 369 Stress analysis of tire sections G (Wang, Daniel, and Huang), Oct.—Dec., 349 Goldstein, A. A.: Finite element Torsional analysis of a steel cord- analysis of a quasi-static rolling rubber tire belt structure tire model for determination of (Pidaparti), Oct.—Dec., 339 truck tire forces and moments, Fluid dynamics Oct.—Dec., 278 Calculation of the three- Grogger, H. and Weiss, M.: dimensional free surface flow Calculation of the three- around an automobile tire dimensional free surface flow (Grogger and Weiss), Jan.— around an automobile tire, Mar., 39 Jan.—Mar., 39 Force and moment GUTT A free-rolling cornering test for Optimum Young’s modulus heavy-duty truck tires distribution in tire design (Abe, Kamegawa, and Nakajima), (Pottinger, Pelz, Tapia, and Jul.—Sep., 204 Winkler), Apr.—Jun., 153 Theory of optimum tire contour Finite element analysis of a and its application (Nakajima, quasi-static rolling tire model Kamegawa, and Abe), Jul.— for determination of truck tire Sep., 184 forces and moments (Goldstein), Oct.—Dec., 278 Fracture H An application of finite element- based fracture mechanics Han, I.-S., Chung, C.-B., Kim, J.- analysis to cord-rubber H., Kim, S.-J., Chung, H.-C., structures (Ebbott), Jul.—Sep., Cho, C.-T., and Oh, S.-C.: 220 Dynamic simulation of the tire Free rolling cornering curing process, Jan.—Mar., 50 A free-rolling cornering test for Heat transfer heavy-duty truck tires Dynamic simulation of the tire (Pottinger, Pelz, Tapia, and curing process, (Han, Chung, Winkler), Apr.—Jun., 153 Kim, Kim, Chung, Cho, and Free surface flow Oh), Jan.—Mar., 50 Calculation of the three- Huang, K.: see Wang, T.-M., dimensional free surface flow Daniel, I. M., and Huang, K. around an automobile tire Hydroplaning (Grogger and Weiss), Jan.— Calculation on the three- Mar., 39 dimensional free surface flow Friction around an automobile tire Friction and wear of tire tread (Grogger and Weiss), Jan.— rubber (Sakai), Jul.—Sep., 252 Mar., 39 370 TIRE SCIENCE & TECHNOLOGY application to tires, Jan.—Mar., 11 Indoor tire wear Indoor simulation of tire wear: some case studies (Stalnaker, Turner, Parekh, Whittle, and Laser scanning Norton), Apr.—Jun., 94 Indoor simulation of tire wear: Irregular wear some case studies (Stalnaker, Indoor simulation of tire wear: Turner, Parekh, Whittle, and some case studies (Stalnaker, Norton), Apr.—Jun., 94 Turner, Parekh, Whittle, and Lateral force Norton), Apr.—Jun., 94 A free-rolling cornering test for ISO 362 heavy-duty truck tires Pass-by noise measurement with (Pottinger, Pelz, Tapia, and a noise-isolated car Winkler), Apr.—Jun., 153 (Buschmann), Jan.—Mar., 2 Lift force Calculation of the three- dimensional free surface flow K around an automobile tire (Grogger and Weiss), Jan.— Kagami, S.: see Shiobara, H., Mar., 39 Akasaka, T., and Kagami, S. Light weight Kamegawa, T.: see Abe, A., Light-weight tire concept (Lux Kamegawa, T., and Nakajima, and Stumpf), Apr.—Jun., 119 Y. Load transfer mechanism Kamegawa, T.: see Nakajima, Y., End effects in twisted cord- Kamegawa, T., and Abe, A. rubber composites (Padovan), Kim, J.-H.: see Han, L.-S., Chung, Oct.—Dec., 321 C.-B., Kim, J.-H., Kim, S.-J., Lux, F. and Stumpf, H.: Light- Chung, H.-C., Cho, C.-T., and weight tire concept, Apr.—Jun., Oh, S.-C. 119 Kim, S.-J.: see Han, 1.-S., Chung, C.-B., Kim, J.-H., Kim. S.-J., M Chung, H.-C., Cho, C.-T., and Oh. S.-C. Modulus optimization Kounavis, J.: see Rimondi, G., Optimum Young’s modulus Toth, W. J., and Kounavis, J. distribution in tire design (Abe, Koutny, F.: Analytical comments on Kamegawa, and Nakajima), radial tire nonuniformity, Apr.— Jul.—Sep., 204 June., 132 Moiré method Kulikov, G. M.: Computational Stress analysis of tire sections models for multilayered (Wang, Daniel, and Huang), composite shells with Oct.—Dec., 349 VOLUME 24 INDEX 371 Multilayered composite shell Pass-by noise Computational models for Pass-by noise measurement with multilayered composite shells a noise-isolated car with application to tires (Buschmann), Jan.—Mar., 2 (Kulikov), Jan.—Mar., 11 Pelz, W.: see Pottinger, M. G., Pelz, W., Tapia, G. A., and Winkler, N C. B. Pidaparti, R. M. V.: Torsional Nakajima, Y.: see Abe, A., anlaysis of a steel cord-rubber Kamegawa, T., and Nakajima, Y. tire belt structure, Oct.—Dec., Nakajima, Y., Kamegawa, T., and 339 Abe, A.: Theory of optimum Pottinger, M. G., Pelz, W., Tapia, tire contour and its application, G. A., and Winkler, C. B.: A Jul.—Sep., 184 free-rolling cornering test for Noise isolation heavy-duty truck tires, Apr.,— Pass-by noise measurement with Jun., 153 a noise-isolated car (Buschmann), Jan.—Mar., 2 Nonequilibrium tire contour Theory of optimum tire contour and its application (Nakajima, Radial run-out Kamegawa, and Abe), Jul.— Analytical comments on radial Sep., 184 tire nonuniformity (Koutny), Norton, R.: see Stalnaker, D., Apr.—Jun., 132 Turner, J., Parekh, D., Whittle, Radial stiffness B., and Norton, R. Analytical comments on radial tire nonuniformity (Koutny), O Apr.—Jun., 132 RCOT Oh, S.-C.: see Han, I.-S., Chung, Theory of optimum tire contour C.-B., Kim, J.-H., KIm, S.-J., and its application (Nakajima, Chung, H.-C., Cho, C.-T., and Kamegawa, and Abe), Jul.— Oh, S.-C Sep., 184 Rimondi, G., Toth, W. J., and P Kounavis, J.: Predictive model for reversion-type cures, Jan.— Padovan, J.: End effects in twisted Mar., 77 cord-rubber compsites, Oct.— Ring model Dec., 321 Two-dimensional contact pressure Parekh, D.: see Stalnaker, D., distribution of a radial tire in Turner, J., Parekh, D., Whittle, motion (Shiobara, Akasaka, B., and Norton, R. and Kagami), Oct.—Dec. 294 372 TIRE SCIENCE & TECHNOLOGY Rolling resistance Statistics Light-weight tire concept (Lux Analytical comments on radial and Stumpf), Apr.—Jun., 119 tire nonuniformity (Koutny), Rolling tire Apr.—Jun., 132 Finite element analysis of a Strain quasi-static rolling tire model Computational models for for determination of truck tire multilayered composite shells forces and moments with application to tires (Goldstein), Oct.—Dec., 278 (Kulikov), Jan.—Mar., 11 Rubber Stress analysis of tire sections Friction and wear of tire tread (Wang, Daniel, and Huang), rubber (Sakai), Jul—Sep., 252 Oct.—Dec., 349 Predictive model for reversion- Stress type cures (Rimondi, Toth, and Computational models for Kounavis), Jan.—Mar., 77 multilayered composite shells Rubber reversion with application to tires Predictive model for reversion- (Kulikov), Jan.—Mar., 11 type cures (Rimondi, Toth, and Stress analysis of tire sections Kounavis), Jan.—Mar., 77 (Wang, Daniel, and Huang), Oct.—Dec., 349 S Stumpf, H.: see Lux, F. and Stumpf, H. Sakai, H.: Friction and wear of tire tread rubber, Jul—Sep., 252 T Self-supporting tire Development of a 60-series self- Tapia, G. A.: see Pottinger, M. G., supporting tire (Willard), Jul.— Pelz, W., Tapia, G. A., and Sep., 236 Winkler, C. B. Shiobara, H., Akasaka, T., and TCOT Kagami, S.: Two-dimensional Theory of optimum tire contour contact pressure distribution of and its application (Nakajima, a radial tire in motion, Oct.— Kamegawa, and Abe), Jul.— Dec., 294 Sep., 184 Slip measurement Tire Pass-by noise measurement with Analytical comments on radial a noise-isolated car tire nonuniformity (Koutny), (Buschmann), Jan.—Mar., 2 Apr.—Jun., 132 Stalnaker, D., Turner, J., Parekh, An application of finite element- D., Whittle, B., and Norton, R.: based fracture mechanics Indoor simulation of tire wear: analysis to cord-rubber some case studies, Apr.—Jun., structures (Ebbott), Jul—Sep., 94 220 VOLUME 24 INDEX 373 Computational models for for determination of truck tire multilayered composite shells forces and moments with application to tires (Goldstein), Oct.—Dec., 278 (Kulikov), Jan.—Mar., 11 Treadwear Friction and wear of tire tread Friction and wear of tire tread rubber (Sakai), Jul.—Sep., 252 rubber (Sakai), Jul.—Sep., 252 Stress analysis of tire sections Indoor simulation of tire wear: (Wang, Daniel, and Huang), some case studies (Stalnaker, Oct.—Dec., 349 Turner, Parekh, Whittle, and Torsional analysis of a steel cord- Norton), Apr.—Jun., 94 rubber tire belt structure Truck tires (Pidaparti), Oct.—Dec., 339 A free-rolling cornering test for Two-dimensional contact pressure heavy-duty truck tires distribution of a radial tire in (Pottinger, Pelz, Tapia, and motion (Shiobara, Akasaka, Winkler), Apr.—Jun., 153 and Kagami), Oct.—Dec., 294 Turner, J.: see Stalnaker, D.., Tire construction Turner, J., Parekh, D., Whittle, Light-weight tire concept (Lux B., and Norton, R. and Stumpf), Apr.—Jun., 119 Tire design U Optimum Young’s modulus distribution in tire design (Abe, Kamegawa, and Nakajima), Uniformity Jul.—Sep., 204 Analytical comments on radial Tire performance tire nonuniformity (Koutny), Theory of optimum tire contour Apr.—Jun., 132 and its application (Nakajima, Kamegawa, and Abe), Jul.— Vv Sep., 184 Tire/road noise Pass-by noise measurement with Viscoelasticity a noise-isolated car Two-dimensional contact pressure (Buschman), Jan.—Mar., 2 distribution of a radial tire in Toth, W. J.: see Rimondi, G., Toth, motion (Shiobara, Akasaka, W. J., and Kounavis, J. and Kagami), Oct.—Dec. 294 Torsional stiffness Torsional analysis of a steel cord- Ww rubber tire belt structure (Pidaparti), Oct.—Dec., 339 Traction Wang, T.-M., Daniel, I. M., and Finite element analysis of a Huang, K.: Stress analysis of quasi-static rolling tire model tire sections, Oct.—Dec., 349 374 TIRE SCIENCE & TECHNOLOGY Weight reduction Whittle, B.: see Stalnaker, D., Light-weight tire concept (Lux Turner, J., Parekh, D., Whittle, and Stumpf), Apr.—Jun., 119 B., and Norton, R. Weiss, M.: see Grogger, H. and Weiss, M. Z Willard, W. L.: Development of a 60-series self-supporting tire, Jul.—Sep., 236 Zero inflation Winkler, C. B.,: see Pottinger, Development of a 60-series self- M. G., Pelz, W., Tapia, G. A., supporting tire (Willard), Jul— and Winkler, C. B. Sep., 236

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.