ebook img

TIR1/AFB-Based Auxin Perception: Mechanism and Role in PDF

12 Pages·2015·0.52 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview TIR1/AFB-Based Auxin Perception: Mechanism and Role in

ThePlantCell,Vol.27:9–19,January2015,www.plantcell.orgã2015AmericanSocietyofPlantBiologists.Allrightsreserved. REVIEW SCFTIR1/AFB-Based Auxin Perception: Mechanism and Role in Plant Growth and Development MohammadSalehin,RammyaniBagchi,andMarkEstelle1 HowardHughesMedicalInstituteandSectionofCellandDevelopmentalBiology,UniversityofCaliforniaSanDiego,LaJolla, California92093 Auxinregulatesavastarrayofgrowthanddevelopmentalprocessesthroughoutthelifecycleofplants.Auxinresponsesare highlycontextdependentandcaninvolvechangesincelldivision,cellexpansion,andcellfate.Thecomplexityoftheauxin response is illustrated by the recent finding that the auxin-responsive gene set differs significantly between different cell types in the root. Auxin regulation of transcription involves a core pathway consisting of the TIR1/AFB F-box proteins, the Aux/IAAtranscriptionalrepressors,andtheARFtranscriptionfactors.Auxinisperceivedbyatransientcoreceptorcomplex consistingofaTIR1/AFBproteinandanAux/IAAprotein.AuxinbindingtothecoreceptorresultsindegradationoftheAux/ IAAsandderepressionofARF-basedtranscription.Althoughthebasicoutlinesofthispathwayarenowwellestablished,it remainsunclearhowspecificityofthepathwayisconferred.However,recentresults,focusingonthewaysthatthesethree familiesofproteinsinteract,arestartingtoprovideimportantclues. INTRODUCTION PROTEIN2A(SKP2A)(Juradoetal.,2010),andthenuclearSCFTIR1/ AFBs-Aux/IAA(SKP-Cullin-Fbox[SCF],TIR1/AFB[TRANSPORTIN- ThetermauxinisderivedfromtheGreekword“auxein,”which HIBITORRESISTANT1/AUXINSIGNALINGF-BOX],AUXIN/INDOLE meanstogrow.Darwinobservedtheeffectsofauxininplantsas ACETICACID)auxincoreceptors(Dharmasirietal.,2005a;Kepinski earlyas1880.Inhisbook“ThePowerofMovementinPlants,”he and Leyser, 2005; Calderón-Villalobos et al., 2012). Although there described how the effects of light on movement of canary grass havebeensomeimportantrecentadvancesinourunderstandingof coleoptiles were mediated by a chemical signal (Darwin and ABP1,thisreviewfocusesontheSCFTIR1/AFBcomplexesandtheir Darwin,1880).Ittookanother60yearsofresearchtoshowthat function in auxin perception and the regulation of transcription in this chemical signal is indole-3-acetic acid, the major naturally Arabidopsisthaliana. occurring auxin in plants (Haagen-Smit et al., 1946; Mauseth, 1991;Ravenetal.,1992;SalisburyandRoss,1992;Arteca,1996). Afterthisdiscovery,auxinresearchadvancedrapidlyalongmul- SCFTIR1/AFBsANDAUXINPERCEPTION tiple trajectories. Numerous auxinic compounds were identified, some of which were developed as herbicides and growth regu- Auxinregulatestranscriptionofauxin-responsivegenesthrough lators(Sterlingetal.,1997;CobbandReade,2010).Basedonthe the action ofthe TIR1/AFBF-boxproteins, theAux/IAAtran- chemicalstructuresofthesecompounds,thespatialfeaturesof scriptionalrepressors,andtheauxinresponsefactors(ARFs).The a hypothetical auxin receptor were predicted (Thimman, 1977). Arabidopsisgenomeencodes6TIR1/AFBs,29Aux/IAAproteins, Thismarkedthebeginningofwhatturnedouttobeanextended and23ARFs.Ingeneral,theAux/IAAsactbydirectlybindingtothe searchfortheauxinreceptor. ARFsandrecruitingthecorepressorproteinTOPLESS(TPL)tothe Auxin has been associated with embryogenesis (reviewed in chromatin(Figure1;Szemenyeietal.,2008;reviewedinGuilfoyle Jürgens, 1995), tropic responses (Firn and Digby, 1980), organo- andHagen,2007,2012;MockaitisandEstelle,2008;Chapmanand genesis (Li et al., 2005; De Smet et al., 2010), root development Estelle,2009;WangandEstelle,2014;Guilfoyle,2015).Degrada- (reviewed in Benjamins and Scheres, 2008), shoot development tionoftheAux/IAArepressorsisacriticaleventinauxinsignaling (Vernoux et al., 2011), and plant defense (reviewed in Kazan and andrequiresaubiquitinproteinligaseE3calledSCFTIR1/AFB(Gray Manners, 2009). Understanding how auxin can regulate so many etal.,1999,2001;Ramosetal.,2001).Thesubstraterecognition diverse physiological and developmental processes is an active subunitofthisE3,theF-boxproteinTIR1(orrelatedAFBprotein), andexcitingareaofcurrentresearch. wasfirstidentifiedinageneticscreenforauxintransportinhibitor- Therearethreeknownclassesofauxinreceptors:AUXINBIND- responsemutants(Rueggeretal.,1998).Sincethen,anumberof INGPROTEIN1(ABP1)(Herteletal.,1972;Jonesetal.,1998;Tromas elegantstudieshaveshownthatauxinpromotesdegradationofthe et al., 2013; Xu et al., 2014), S-PHASE KINASE-ASSOCIATED Aux/IAA proteins through the SCFTIR1/AFB, in an auxin-dependent manner (Gray et al., 2001; Dharmasiri et al., 2005a; Kepinski and Leyser,2005;Tanetal.,2007).TheAux/IAAdegronislocatedina [email protected]. conserveddomaincalledDomainII(dII).Insteadofcausingasub- www.plantcell.org/cgi/doi/10.1105/tpc.114.133744 stratemodification,commonlyrequiredforsubstraterecognitionby 10 ThePlantCell Figure1. SCFTIR1/AFB-BasedAuxinPerceptionandResponse. (A) Domain structure of the Aux/IAA and ARF proteins. EAR is the ETHYLENE RESPONSE FACTOR-associated amphiphilic repression motif that interactswiththeTPLcorepressor.ThedIIdomainfacilitatesinteractionwiththeTIR1/AFBproteininresponsetoauxin.ThePB1domainhasboth positiveandnegativeelectrostaticinterfacesfordirectionalproteininteraction.DBDistheB3DNAbindingdomain,andMRisthemiddleregionthat determinestheactivityoftheARF. (B)ActivatingARFscanformdimersthroughtheirDBDsandbindinvertedrepeatAuxREs(Boeretal.,2014).Atlowauxinlevels,theAux/IAAproteins formmultimerswithARFsandrecruitTPLtothechromatin.NotethatmostAuxREsarenotfoundasinvertedrepeatsinplantgenomes,indicatingthat ARFsbindtoDNAinconfigurationsotherthanshownhere. (C) High levels of auxin promote ubiquitination and degradation of Aux/IAAs through SCFTIR1/AFB and the proteasome. ARFs are free to activate transcriptionoftargetgenes.ThesiteofAux/IAAubiquitinationisarbitrary.Theactualsitesareunknown.Auxinisrepresentedbytheredoval. manyothercullin-basedE3ligases,auxinenhancestheinteraction SinglemutantsinmembersoftheTIR1/AFBgenefamilyhave, betweenSCFTIR1/AFBandthedIIbydirectlybindingtoTIR1,dem- atmost,amildauxin-relatedphenotype.Thetir1mutantisauxin onstratingthatTIR1isthelong-soughtauxinreceptor(Dharmasiri resistant and is slightly shorter than wild-type plants (Ruegger etal.,2005a,Kepinskiand Leyser2005;reviewedin Skaaretal., etal.,1998).However,higherordermutantswithcombinations 2013). of afb1, afb2, and afb3 in the tir1 mutant background exhibit SCFTIR1/AFB-BasedAuxinPerception 11 severegrowthdefectsandincreasedauxinresistance.Mostofthe quadruple tir1 afb1 afb2 afb3 mutants arrest after germination. Occasionally,tir1afb1afb2afb3plantsareabletogrowbeyondthis stage but show defects in multiple auxin responses (Dharmasiri etal.,2005b,Parryetal.,2009).Inaddition,mutationsinotherSCF subunitslikeCUL1,ASK1,andRBX1causeauxinresistanceand stabilize the Aux/IAA proteins (Gray et al., 1999, 2001, 2002; Hellmannetal.,2003;Moonetal.,2007;Gilkerson,etal.,2009). Recently,twonewtir1mutantswereidentifiedinayeasttwo-hybrid- basedscreen.Thetir1D170Eandtir1M473Lmutationsincreasethe affinityofTIR1fortheAux/IAAproteins,whereasplantsexpressing tir1D170Eandtir1M473Ltransgenesshowanauxinhypersensitive phenotypeanddevelopmentaldefects(Yuetal.,2013). STRUCTURALINSIGHTINTOAUXINPERCEPTION BYSCFTIR1/AFBs All six members of the TIR1/AFB family have been shown to functionasauxinreceptors(Dharmasirietal.,2005a,2005b;Parry et al., 2009; Greenham et al., 2011). Besides the F-box domain, theseproteinsalsocontainaleucine-richrepeat(LRR)domainwith 18 LRRs. AFB4 and AFB5 proteins are distinct from the other members of this family in thatthey haveanN-terminalextension thatisnotpresentinTIR1andAFB1toAFB3. When the TIR1/AFB proteins were first shown to function as auxinreceptors,themechanismofauxinperceptionwasunknown. Later,structuralstudiesrevealedtheelegantwaythatauxinactsto facilitatetheinteractionbetweenTIR1andtheAux/IAAsubstrate. Figure2. StructureofTIR1-ASK1inaComplexwithIAAandtheDegron ThestructureofTIR1wassolvedinacomplexwithASK1,thedII PeptidefromIAA7. peptide from the Aux/IAA IAA7, and auxin (Tan et al., 2007; re- viewed in Calderon-Villalobos et al., 2010) (Figure 2). The TIR1- TIR1-ASK1 structure as described by Tan et al. (2007). ASK1 (green) interactswithTIR1(red)throughtheF-boxdomain.IAA(blue)ispresent ASK1 complexis mushroom shaped. Thecap of themushroom, intheauxinbindingpocketandactstostabilizetheinteractionbetween includingtheauxinbindingpocket,isformedbytheLRRdomainof TIR1andthedegronpeptide(palecyan).AsingleInsP6molecule(pale TIR1.TheF-boxdomaintogetherwithASK1formsthestemofthe orange)isboundtoTIR1beneaththeauxinbindingpocket. mushroom.TheLRRsformaslightlytwisted,incompletering-like solenoidstructureofalternatingsolvent-facinga-helicesandcore- liningb-strands.ThetopsurfaceoftheLRRdomainhasasingle The six TIR1/AFB proteins are part of small subclade of F-box proteinswithsevenmembers.Theseventhproteininthefamilyis pocket for auxin binding (Tan et al., 2007; reviewed in Calderon- CORONATINEINSENSITIVE1(COI1),knowntobeessentialforthe Villalobos et al., 2010). Strikingly, the structure of the TIR1-ASK1 response to jasmonic acid (JA), a hormone that is structurally un- complex does not change substantially upon auxin binding, in- related to auxin and has a very different role in the plant. Never- dicatingthatauxindoesnotinduceaconformationalchange.Atthe theless, there is a striking similarity between the auxin and JA baseoftheauxinbindingpocketliesaninositolhexakisphosphate (InsP6)molecule.AlthoughthebiologicalsignificanceofthisInsP6 signalingpathways(Chinietal.,2007;Thinesetal.,2007;Yanetal., 2007;reviewedinKatsiretal.,2008;PérezandGoossens,2013).In moleculeisnotknown,ithasbeensuggestedthatitmightactas the case of JA, degradation of a family of repressors called the astructuralcofactor(Tanetal.,2007).Structuralstudieswithdif- JASMONATEZIM(JAZ)proteinsismediatedbyanE3ligasecalled ferentauxincompoundsrevealedthatthebindingpocketforauxin SCFCOI1. The interaction between the JAZ proteins and COI1 is is somewhat promiscuous. Most importantly, these studies re- mediatedbydirectbindingtotheJAderivativeJA-isoleucine(Thines vealedthatunlikeanimalhormones,wheretheligandbindingsiteis etal.,2007;Sheardetal.,2010).Thus,plantshaveevolvedasimilar located distantfrom theactivesiteofthereceptor,auxinactsas a“molecularglue”tostabilizetheinteractionbetweenTIR1andthe mechanismtorespondtoverydifferentregulatorymolecules. Aux/IAAprotein(Tanetal.,2007;reviewed inCalderon-Villalobos etal.,2010;Skaaretal.,2013).Sofar,thestructureofSCFTIR1has THEAUXINCORECEPTORMODEL:ANEWWAYTO beensolvedonlywiththeshortdegronsequencefromtheAux/IAA THINKABOUTAUXINACTION proteins(Tanetal.,2007).Itisexpectedthatacompletestructure ofSCFTIR1withauxinandafull-lengthAux/IAAproteinwillreveal Recently, it was shown that efficient binding of auxin to TIR1 more structural insights into how auxin triggers ubiquitination of requirestheassemblyofacoreceptorcomplexconsistingofTIR1 Aux/IAAproteins. andanAux/IAAprotein(Calderón-Villalobosetal.,2012).Thismay 12 ThePlantCell besignificantbecausetherearesixTIR1/AFBproteinsand29Aux/ Aux/IAAANDARFGENESACTDOWNSTREAM IAAproteinsinArabidopsis.Thus,itispossiblethatdifferentcom- OFSCFTIR1/AFBs binationsofTIR1/AFBandAux/IAAwillhavedifferentbiochemical properties(Figure3).Indeed,auxinbindingassayswithpurifiedTIR1 The Aux/IAA genes were discovered because some members arerapidlyinducedbyauxin.Inpea(Pisumsativum)andsoybean andAux/IAAproteinsshowedthatdifferentcoreceptorcomplexes have different affinities for auxin (Calderón-Villalobos et al., 2012). (Glycine max), the level of several Aux/IAA transcripts increased withinafewminutesofauxintreatment(AbelandTheologis,1996; Forexample,theTIR1-IAA7pairhasaK of10to15nMforIAA, d reviewed in Hagen and Guilfoyle, 2002). It is important to note, whileTIR1-IAA12hasaK ofbetween250and300nMforIAA. d however, that some Aux/IAAs, like IAA28 in Arabidopsis, are not DifferencesinK appeartobedeterminedprimarilybythedIIse- d auxininduced(Roggetal.,2001). quenceof the Aux/IAAproteins, although other sequences may Most of the Aux/IAA proteins have four conserved domains. alsocontribute(Calderón-Villalobosetal.,2012). Domain I has an ETHYLENE RESPONSE FACTOR ASSOCI- Localizedregulationofauxinlevelshasakeyroleinanumberof ATEDAMPHIPHILICREPRESSION(EAR)motifwheretheTPL/ processesincludingpositioningoforganprimordia,maintenanceof TOPLESS RELATED corepressor binds (Long et al., 2006; stemcellniches,patterningofthefruit,andabilityofauxintodirect Szemenyeietal.,2008;Causieretal.,2012).DomainIIcontains cell division, expansion, and differentiation (Jones et al., 1998; thedegronsequence,whichinteractsdirectlywiththeTIR1/AFB Sabatinietal.,1999;Reinhardtetal.,2000;Benkováetal.,2003;Li et al., 2005; Sorefan et al., 2009; Jurado et al., 2010; Mähönen proteinandauxin.DomainIIIandDomainIVareresponsiblefor et al., 2014). In the root, direct measurement of auxin levels in dimerizationwithotherAux/IAAproteinsandheterodimerization differentcelltypes,aswellasthebehaviorofauxinreporters,in- withARFproteins(Ulmasovetal.,1997a). dicate that auxin levels range widely with anauxin maximum Important insights into the roles of the Aux/IAA genes came around thequiescentcenteranddecreasing auxinlevelsmoving from genetic studies. Gain-of-function mutations in several of proximallyfromthequiescentcenteraswellasdistallytowardthe these genes, including IAA1/AXR5, IAA3/SHY2, IAA7/AXR2, roottip(Peterssonetal.,2009;Vernouxetal.,2011;Brunoudetal., IAA12/BDL,IAA14/SLR,IAA17/AXR3,IAA18/CRANE,IAA19/MSG, 2012;Bandetal.,2014).Recently,celltype-specificgenome-wide andIAA28,leadtostabilizationoftherespectiveproteinbecause analysis of auxin responses in four different root cell types was theyarenotdegradedbySCFTIR1/AFBs(Rouseetal.,1998;Tianand reported.Oneofthehighlightsofthisstudywasthatdifferentcell Reed, 1999; Nagpal et al., 2000; Rogg et al., 2001; Fukaki et al., typeshavebothdivergentandparalleltranscriptomicresponseto 2002;Tatematsuetal.,2004;Yangetal.,2004;Ueharaetal.,2008; auxin(Bargmannetal.,2013).Thesestudieshighlightthepresence Ploenseetal.,2009).Thegain-of-functionmutationsareallwithin ofanauxingradientintherootandthetranscriptionalcomplexity a stretchof fiveconserved amino acids in the dII.The mutations ofauxinaction.Itispossiblethatdiverseauxincoreceptorsmaybe preventSCFTIR1/AFBsbindingresultinginstabilizationoftheprotein necessarytointerpretthewiderangeofauxinlevelsthatexistin (Ramos et al., 2001; Dreher et al., 2006). On the other hand, the theplant.Thus,thecoreceptormechanismcoulddramaticallyex- analysisofloss-of-functionmutantshassofarfailedtorevealro- pandthedynamicrangeofauxinperception,potentiallyproviding bustmutantphenotypesinArabidopsis,suggestingextensivege- apartialexplanationforhowauxincontrolssomanydifferentas- neticredundancyamongmembersofthefamily(Remingtonetal., pects of plant development (Calderón-Villalobos et al., 2012; Lee 2004;Overvoordeetal.,2005;reviewedinReed,2001).Thisisin etal.,2014). contrasttothesituationintomato(Solanumlycopersicum)where several loss-of-function alleles or antisense constructs produce arobustphenotypesuggestingthatthereislessredundancyinthis species (Wang et al., 2005; Chaabouni et al., 2009; Bassa et al., 2012;Dengetal.,2012;Suetal.,2014). The ARF proteins are B3-type transcription factors. Each of the 23 ARFs in Arabidopsis have anN-terminal DNA binding do- main(DBD)similartothatfoundinthetranscriptionfactorFUSCA3 (Ulmasov et al., 1995, 1997b; Luerssen et al., 1998; reviewed in Liscum and Reed, 2002). The ARFs bind to auxin response ele- ments(AuxREs),eachwiththecanonical6-bpTGTCTCsequence inthepromotersofauxin-responsivegenes.Thefirstfourbasesin the TGTCTC sequence are absolutely required for ARF binding, while more variation is tolerated in the last two bases (Ulmasov et al., 1997b, 1999a; Boer et al., 2014; reviewed in Guilfoyle and Hagen,2007). BasedonactivityinaprotoplastassaytheARFsaredivided Figure 3. Different TIR1/AFB-AUX/1AA-ARF Modules May Regulate intoactivatorsandrepressors(reviewedinGuilfoyleandHagen, DifferentDevelopmentalProcesses. 2012).ARF5,6,7,8,and19proteinshaveamiddleregionthatis Gln (Q) rich and function as activators. All the rest, except for SixTIR1/AFBcaninteractwiththe23differentAux/IAAscontainingthedIIto form numerous coreceptor complexes. Each of the Aux/IAA may interact ARF23, have a middle region rich in serine, proline, or leucine/ with up to 19 ARFs containing Domains III/IV to regulate distinct sets of glycineandarethoughttoactasrepressors,althoughthishas targetgenesthatcontroldifferentphysiologicalprocessesintheplant. notbeenexperimentallytestedforeverymemberofthisgroup. SCFTIR1/AFB-BasedAuxinPerception 13 In addition, ARF3, 13, and 17 lack Domains III/IV. ARF23 con- studiesoftheAux/IAAproteins.Expressionofstabilizedforms sists of a truncated DBD only. Although the ARFs have been of these proteins results in a strong auxin response defect. classified as either activators or repressors, it is important to However,ifoneofthetwoPB1facesismutated,thisdefectis notethattheirbehaviorintheplantmaybemuchmorecomplex. strongly ameliorated, implying that the formation of Aux/IAA FortheactivatingARFs,aworkingmodelforARFregulationis multimersisrequiredforefficientrepression.Sofar,thiseffect nowwellestablished(Figure1;reviewedinGuilfoyleandHagen, hasonlybeendemonstratedforIAA16,butseemslikelytobe 2007, 2012). At low auxin levels, these ARFs are bound to the general.Thesediscoveriesconstituteamajorrefinementofthe Aux/IAA proteins, which recruit the TPL corepressor and other auxin-signaling model (Figure 1; Korasick et al., 2014; Nanao associated chromatin modifying proteins via the EAR motif in etal.,2014). DomainI,resultingintherepressionofauxin-responsivegenes Inadditiontointeractionsbetweenthemselves,theAux/IAAs (Tiwari et al., 2001; Szemenyei et al., 2008). At higher auxin andARFshavealsobeenreportedtoregulateandberegulated levels (Figure 1), Aux/IAAs are ubiquitinated and degraded via byothertranscriptionfactors.AMYBtranscriptionfactor,MYB77, the 26S proteasome machinery, thus freeing ARFs to activate wasshowntointeractwiththeARF7proteinandcontributetoauxin- expression of auxin responsive genes (Figure 1). Since the regulated transcription (Shin et al., 2007). In sunflower (Helianthus phenotype of gain-of-function aux/iaa mutants is caused by annuus),HaIAA27wasshowntobindtotheheatshocktranscription stabilizationoftherespectiveAux/IAAproteinsandconstitutive factorHaHSFA9andrepressitsactivityduringseeddevelopment. repression ofARF proteins, loss-of-function ARF activator mu- AsinthecaseoftheARFs,auxinactedtorelieverepressionofthe tantsshouldhaveasimilarphenotypetoAux/IAAgain-of-function HaHSFA9protein(Carrancoet al.,2010).In anotherrecentreport, mutants.Thisisthecaseforseveralmutants,suchasiaa12/bdland phosphorylation of ARF7 and ARF19 by BRASSINOSTEROID IN- arf5/mp, both of which have a rootless phenotype (Hardtke and SENSITIVE2 (BIN2) was shown to suppress their interaction with Berleth,1998;Hamannetal.,1999;Weijersetal.,2006). Aux/IAAsandthisinturnenhancedtranscriptionofLATERALOR- Recently,alarge-scaleanalysisofAux/IAAandARFsinterac- GANBOUNDARIESDOMAIN16(LBD16)andLBD29duringlateral tionswasdoneusingsystemiclarge-scaleyeasttwo-hybridassays rootinitiation,independentofauxinperception(Choetal.,2014). andbimolecularfluorescencecomplementationassays.Themajor Despitetheserecentadvances,ourunderstandingofhowthe conclusionofthisstudywasthatAux/IAA-Aux/IAAandAux/IAA- ARFs work remains quite superficial compared with fungal and activatorARFinteractionsarecommon,whereasinteractionsbe- animalsystems.Forexample,wearejustbeginningtolearnabout tweenARFsorbetweenAux/IAAsandrepressorARFswereless thecoactivatorsandcorepressorsthatcollaboratewiththeARFsto common(Vernouxetal.,2011).However,arecentstudyprovides regulate transcription. Similarly, the chromatin states associated genetic evidence for an interaction between ARF9, characterized withARFfunctionareunknown.Finally,thefunctionandactivityof as a repressor, and IAA10, suggesting either the function of the therepressorARFsispoorlyunderstood. ARFsismorecomplexorthattheAux/IAAscaninteractwithre- pressorARFsinvivo(Rademacheretal.,2012). DEGRADATIONOFAux/IAAISCRUCIALFOR Recent structural studies of ARFs have led to exciting new AUXINACTION insightintothemolecularfunctionoftheARFandAux/IAAproteins (Boer et al., 2014; Korasick et al., 2014; Nanao et al., 2014). Be- Understanding how Aux/IAA proteins are degraded is a crucial causetheARFproteinsreadilyformhomodimersthroughDomains step in unraveling how auxin triggers diverse developmental III/IV,thisbecamethefocusofstudiesonARFinteraction.However responses.DomainIIoftheAux/IAAsisthoughttobetheprimary DomainIII/IV-independentARFdimerizationwasreportedaslong determinant for degradation by SCFTIR1/AFB (Gray et al., 2001; ago as 1999 (Ulmasov et al., 1999b). More recently, Boer et al. Ramosetal.,2001;Dreheretal.,2006).However,inadditiontothe (2014)solvedthestructureoftheDNAbindingdomainsfromARF5 DomainIIdegronmotif,aconservedlysinebetweenDomainIand anditsdistantparalogARF1incomplexwithagenericAuxREel- DomainIIcontributestoAux/IAAdegradation(Ouelletetal.,2001; ementandshowedthattheDNAbindingdomainshomodimerizeto Dreheretal.,2006).Itisinterestingtonotethatthehalf-lifeofthe generatecooperativeDNAbinding(Boeretal.,2014).Furthermore, Aux/IAAsvarieswidely.Thehalf-lifeofIAA7is;10min,whilethe this study proposed that ARF1 and ARF5 differ in the spacing half-lifeofIAA28is80min,despitethefactthatthesetwoproteins between adjacent binding sites, potentially contributing to ARF have an identical degron sequence. These results indicate that specificity. determinants outside of Domain II also contribute to degradation FurtherinsightwasgainedbystructuralstudiesoftheC-terminal rate.Ontheotherhand,IAA31,whichhasadegenerateDomainII, domain of ARF5 (Nanao et al., 2014) and ARF7 (Korasick et al., withouttheconservedlysine,hasahalf-lifeof>20h,althoughthis 2014).ThisworkrevealedthatDomainsIIIandIV,presentinmost drops to ;4 h after auxin treatment. A small group of Aux/IAAs, oftheAux/IAAandARFs,formaPhoxandBem1p(PB1)domain namely, IAA20, IAA30, and IAA32-34, do not have the classical asfirstproposedbyGuilfoyleandHagen(2012).ThePB1domains Domain II, but overexpression of IAA20 and IAA30 show strong provide both positive and negative electrostatic surfaces for di- auxin-related defects implying that these proteins repress auxin rectional protein interaction (reviewed in Guilfoyle, 2015).Bio- regulatedtranscription(SatoandYamamoto,2008). chemicalanalysisconfirmedthatamutationthataffectsoneor Recently, a synthetic biology approach has been applied to the other of the surfaces in the ARF protein still permits dimeri- thestudyofauxinsignaling(Havensetal.,2012;Pierre-Jerome zation withitselforanAux/IAAprotein, whereas an ARF protein etal.,2014).Byengineeringthecoreauxin-signalingpathwayinto withsubstitutionsinbothfacesisunabletoformadimer(Korasick budding yeast, these workers developed a novel and powerful etal.,2014;Nanaoetal.,2014).Additionalinsightwasgainedby platform for studies of the pathway. Using this system, they 14 ThePlantCell confirmedthattheAux/IAAproteinsaredegradedatverydifferent rates, but in addition, the rate is dependent on the TIR1/AFB protein (Havens et al., 2012). More importantly, the system en- abledthemtodefineaminimalauxinresponsecircuitsufficientto recapitulateauxin-inducedtranscriptioninyeast.Bybuildingand testingcircuitscomposedofdifferentAux/IAAandARFproteins, they were able to show that the behavior of the circuit varied significantlydepending on thecircuitcomponents.Furthermore, circuits with multiple coexpressed Aux/IAAs displayed unique behaviors that may be relevant during plant development. This workprovidesanewapproachfordissectingauxinsignalingand demonstrates the key role of Aux/IAAs in tuning the dynamic patternofauxinresponse(Pierre-Jeromeetal.,2014). Inarelatedstudy,Shimizu-MitaoandKakimoto(2014)tested theauxin-dependentdegradationofallArabidopsisAux/IAAsin combinationwithTIR1orAFBinyeast.TheyfoundthatTIR1and AFB2,butnotAFB1,orAFB3-5wereeffectiveinAux/IAAdegra- dation in the yeast system. All Aux/IAAs, except those lacking DomainII(IAA20,IAA30,IAA32,andIAA34),weredegradedinan auxin-dependentmanner.Asinearlierstudies(Calderón-Villalobos et al., 2012),theeffective auxin concentration for Aux/IAA degra- dation depended on the identity of both the Aux/IAA and TIR1/ AFB2protein(Shimizu-MitaoandKakimoto,2014). Figure4. RegulationoftheTIR1/AFBPathway. ARF-mediated regulation of the Aux/IAA genes constitutes a robust REGULATORYLOOPSINAUXINSIGNALING negative feedback loop. Other pathways may regulate transcription of auxinresponsegenesinbothapositiveandnegativemanner.Forex- Regulatorycomplexityisarecurringthemeinplantdevelopment, ample, the cytokinin responsive transcription factor ARR1 promotes soitisnotsurprisingthatfeedbackandregulatoryloopsexistinthe transcriptionofIAA3intheroot,resultingindownregulationoftheARF auxin-signalingpathway(Figure4).Themoststrikingoftheseisthe targetPIN1.Thisresultsinachangeinauxindistributionthataffectscell negative feedback loop generated by auxin-induced transcription differentiation(DelloIoioetal.,2008).Inaddition,otherpathwaysmay oftheAux/IAAgenes.Clearlythisfeedbackloopwillresultinrapid act directly on the ARFs. For example, the BIN2 kinase regulates the dampening of auxin response upon auxin treatment. However, interactionbetweenARF7andAux/IAAbydirectlyphosphorylatingthe giventhatthekineticsofauxinregulationofAux/IAAsiscomplex, ARF(Choetal.,2014). a complete understanding of this regulatory system will require additionalexperimentsinconjunctionwithamodelingapproach. Itislikelythatmanyadditionalregulatorynodesthatinvolvethe Apart from the negative regulatory loop involving the Aux/ IAAs, members of the auxin efflux carrier PIN-FORMED (PIN) Aux/IAAsandARFwillbeidentifiedgoingforward(Figure4). familywerealsoshowntobeundercontroloftheAux/IAAsand ARFs(Vietenetal.,2005).Ascellularauxinlevelsrise,PINgene THEEVOLUTIONARYHISTORYOFAUXINSIGNALING expressionincreases,resultinginmoreauxineffluxandareduction inauxinlevels(reviewedinAdamowskiandFriml,2015).Thus,this Colonization of land by plants was a major event in evolution. regulatory circuit contributes to auxin homeostasis. Among the However,thetimeatwhichauxinsignalingemergedisnotclear features of this regulation is a striking compensatory mechanism (reviewedinDeSmetandBeeckman,2011).Theauxin-signaling thatmayacttostabilizeauxingradients.Inthissystem,thelossof pathwayisconservedinlandplants.GenesencodingAux/IAA, aPINproteinresultsinanincreaseincellularauxinlevels.Thisin ARF, and TIR1 homologs are present within the genomes of turn causes the ectopic expression of other PIN proteins, thus themossPhyscomitrellapatensandthelycophyteSelaginella compensatingfortheoriginalPINdeficiency(Vietenetal.,2005).In moellendorffii(Lauetal.,2009;Paponovetal.,2009;reviewedin addition, accumulation of auxin during de novo organ formation De Smetand Beeckman, 2011;Finet and Jaillais, 2012).In the leadstorearrangementsinthesubcellularpolarlocalizationofPIN case of P. patens, genetic studies have shown that the mech- auxintransporters.Thiseffectiscellspecific,independentofPIN anism of auxin signaling is very similar to that of angiosperms transcription, and involves the Aux/IAA-ARF signaling pathway (Priggeetal.,2010;Lavyetal.,2012).Thepresenceofauxinin (Saueretal.,2006). algal species has been reported, but the physiological signifi- ThePINsalsofactorintoanotherauxin-dependentregulatory canceofthisisnotclear.InthecaseofChlorophyta,adivisionof loopthataffectsbehaviorofcellsintherootmeristem.DelloIoio the green algae, no orthologs of TIR1/AFB, Aux/IAA, and ARFs et al. (2008) showed that the cytokinin response factor ARR1 werefound(Paponovetal.,2009;reviewedinLauetal.,2009;De activates transcription of the Aux/IAA gene SHY2/IAA3. The Smet and Beeckman, 2011; Finet and Jaillais, 2012). A recent IAA3proteininturnrepressestranscriptionofPIN1resultingin reportofa draft genome sequence of thefilamentous terrestrial achangeinauxindistributionthatpromotescelldifferentiation. alga Klebsormidium flaccidum indicates that this species lacks SCFTIR1/AFB-BasedAuxinPerception 15 aTIR1-likeauxinreceptorbutdoeshaveotherauxin-relatedpro- phyllotaxy,lateralbranching,androotgrowth(Reinhardtetal.,2003; teins such as ABP1, AUXIN RESISTANT1, and PIN (Hori et al., Jönsson et al., 2006; Shinohara et al., 2013; Band et al., 2014; 2014).ItisalsointerestingtonotethatmostoftheSCF-dependent Mähönenetal.,2014).Thisinsightfulapproachwillbecomeeven planthormonesignalingcomponents,suchasTIR1,COI1,andGA morepowerfulasthemodelsbecomeincreasinglyparameterized INSENSITIVEDWARF1,aremissinginK.flaccidumgenome(Hori byexperimentaldata. etal.,2014). FUTUREDIRECTIONS USEOFAUXIN-INDUCIBLEDEGRONSASATOOLIN Auxin plays a role almost every aspect of plant development. ANIMALSYSTEMS Although the general framework of auxin action has been estab- In the last several years, SCFTIR1/AFB and the Aux/IAA proteins lished,thespecificelementsinvolvedineachdevelopmentalsignal remaintobediscovered.BecausetheAux/IAAproteinsarecentral haveprovidedthebasisforanovelmethodofregulatingprotein and dynamicregulatorsofauxinsignaling,furtherstudiesoftheir levels in non-plant species. This system is called the auxin- role in auxin perception, their interactions with the ARF proteins, inducibledegronsystem(Nishimuraetal.,2009;Hollandetal., and their ultimate effect on the transcriptional output will be an 2012;Kankeetal.,2012;Farretal.,2014;NishimuraandKanemaki, important way forward. The ability of the Aux/IAAs to form auxin 2014;Samejimaetal.,2014).AlleukaryotespossessSCFubiquitin coreceptorswithTIR1/AFBsfurtherexpandsthedynamicrangeof ligases, and the architecture of Arabidopsis TIR1, including the F-box domain,is sufficiently conserved to allow assembly into an auxin perception. In addition, recent exciting studies show that SCFTIR1complexinyeastandanimals.Whenaproteinofinterestis ABP1functionsasacellsurface-basedauxinreceptor(Chenetal., 2001;Chenetal.,2012;Xuetal.,2014).Howauxinperceptionat fusedtotheAux/IAAdegron,calledtheauxin-induceddegroninthis thecellsurfaceandinthenucleusarecoordinatedisanimportant context,andintroducedintoyeastcellsexpressingTIR1,thetagged outstandingquestion(Tromasetal.,2013;Paqueetal.,2014).Fi- proteinwillbedegradedinanauxin-dependentmanner(Nishimura nally,theeffectsofauxinoncellcycleregulationmaybemediated et al., 2009). The system provides a rapid and, more importantly, in part by SCFSKP2A, which binds to auxin in a cell-free assay reversiblewaytoregulateproteinlevels.Theauxin-inducibledegron (Juradoetal.,2010).Discoveringhowinformationfromthesedif- systemhasbeenadaptedforanumberofvertebratecelltypesand ferent perception mechanisms is integrated during plant de- isprovingtobeausefultoolforawiderangeofstudies velopmentwillbeanexcitingchallengeforthefuture. NEWTECHNOLOGIESTODISSECTTHE ACKNOWLEDGMENTS AUXIN-SIGNALINGPATHWAY M.S.andR.B.thankRebeccaDicksteinforcriticallyreadingthearticle Asmentionedabove,thereappearstobeextensiveredundancy andforhelpfulsuggestions.Thisworkwassupportedbygrantsfromthe inboththeARFandAux/IAAfamiliesofproteins.Consequently, HowardHughesMedicalInstitute,theGordonandBettyMooreFounda- theroleofeachAux/IAAandARFproteinhasnotbeendefined tion,andtheNationalInstitutesofHealth(GrantGM43644). (Okushima et al., 2005; Overvoorde et al., 2005). Because the creationofhigherordermutants bygeneticcrossingisatime- consuming process, the emergence of precise genome editing AUTHORCONTRIBUTIONS tools like CLUSTERED REGULARLY INTERSPACED SHORT Allauthorscontributedtowritingthearticle. PALINDROMICREPEAT(CRISPR)-CRISPRASSOCIATEDSYSTEM (Cas9)isawelcomedevelopment(Congetal.,2013;Malietal., 2013). The CRISPR-Cas9 system has been successfully used Received October 29, 2014; revised December 14, 2014; accepted to create multiple mutants in a mouse model in a short time December26,2014;publishedJanuary20,2015. (Wang et al., 2013). Several reports of successful precise ge- nome editing in Arabidopsis and other plants using CRISPR- Cas9areverypromising(Lietal.,2013;Fengetal.,2014;Jiang REFERENCES etal.,2014;Schimletal.,2014;reviewedinLozano-Justeand Cutler, 2014; Hyun et al., 2015). The CRISPR-Cas9 system Abel, S., and Theologis, A. (1996). Early genes and auxin action. should decrease the amount of time it takes to generate the PlantPhysiol.111:9–17. higherordermutantsrequiredforanalysisofAux/IAAandARF Adamowski, M., and Friml, J. (2015). PIN-dependent auxin transport: genefamilies. action,regulation,andevolution.PlantCell27:20–32. Overthelastthreedecadesgenetics,biochemistryandmolec- Arteca,R.(1996).PlantGrowthSubstances:PrinciplesandApplica- tions.(NewYork:Chapman&Hall). ular approaches have provided an explanation for how auxin Band, L.R.,etal. (2014). Systems analysis of auxin transportin the controlsmanyaspectsofplantgrowth.However,partlybecauseof Arabidopsisrootapex.PlantCell26:862–875. thecomplexityofauxinbiology,ourviewofthisregulatorysystem Bargmann,B.O.R.,Vanneste,S.,Krouk,G.,Nawy,T.,Efroni,I.,Shani,E., remainsincomplete.Amorecompleteunderstandingwillcertainly Choe,G.,Friml,J.,Bergmann,D.C.,Estelle,M.,andBirnbaum,K.D. require the application of systems level and computational ap- (2013).Amapofcelltype-specificauxinresponses.Mol.Syst.Biol.9:688. proaches.Severalgroupshavedevelopedinstructivemathematical Bassa,C.,Mila,I.,Bouzayen,M.,andAudran-Delalande,C.(2012). models that help to explain several auxin-related events like Phenotypes associated with down-regulation of Sl-IAA27 support 16 ThePlantCell functionaldiversityamongAux/IAAfamilymembersintomato.Plant Deng,W.,Yang,Y.,Ren,Z.,Audran-Delalande,C.,Mila,I.,Wang, CellPhysiol.53:1583–1595. X.,Song,H.,Hu,Y.,Bouzayen,M.,andLi,Z.(2012).Thetomato Benjamins, R., and Scheres, B. (2008). Auxin: the looping star in SlIAA15 is involved in trichome formation and axillary shoot de- plantdevelopment.Annu.Rev.PlantBiol.59:443–465. velopment.NewPhytol.194:379–390. Benková,E.,Michniewicz,M.,Sauer,M.,Teichmann,T.,Seifertová, De Smet, I., and Beeckman, T. (2011). Asymmetric cell division in D., Jürgens, G., and Friml, J. (2003). Local, efflux-dependent auxin landplantsandalgae:thedrivingforcefordifferentiation.Nat.Rev. gradients as a common module for plant organ formation. Cell 115: Mol.CellBiol.12:177–188. 591–602. DeSmet,I.,etal.(2010).Bimodularauxinresponsecontrolsorgan- Boer, D.R., Freire-Rios, A., van den Berg, W.A.M., Saaki, T., ogenesis in Arabidopsis. Proc. Natl. Acad. Sci. USA 107: 2705– Manfield, I.W., Kepinski, S., López-Vidrieo, I., Franco-Zorrilla, 2710. J.M.,deVries,S.C.,Solano,R.,Weijers,D.,andColl,M.(2014). Dharmasiri,N.,Dharmasiri,S.,andEstelle,M.(2005a).TheF-box StructuralbasisforDNAbindingspecificitybytheauxin-dependent proteinTIR1isanauxinreceptor.Nature435:441–445. ARFtranscriptionfactors.Cell156:577–589. Dharmasiri,N.,Dharmasiri,S.,Weijers,D.,Lechner,E.,Yamada, Brunoud, G., Wells, D.M., Oliva, M., Larrieu, A., Mirabet, V., M., Hobbie, L., Ehrismann, J.S., Jürgens, G., and Estelle, M. Burrow, A.H., Beeckman, T., Kepinski, S., Traas, J., Bennett, (2005b). Plant development is regulated by a family of auxin re- M.J., and Vernoux, T. (2012). A novel sensor to map auxin re- ceptorFboxproteins.Dev.Cell9:109–119. sponseanddistributionathighspatio-temporalresolution.Nature Dreher, K.A., Brown, J., Saw, R.E., and Callis, J. (2006). The Ara- 482:103–106. bidopsisAux/IAAproteinfamilyhasdiversifiedindegradationand Calderón Villalobos, L.I., et al. (2012). A combinatorial TIR1/AFB- auxinresponsiveness.PlantCell18:699–714. Aux/IAA co-receptor system for differential sensing of auxin. Nat. Farr, C.J., Antoniou-Kourounioti, M., Mimmack, M.L., Volkov, A., Chem.Biol.8:477–485. and Porter, A.C. (2014). The a isoform of topoisomerase II is re- Calderon-Villalobos,L.I.,Tan,X.,Zheng,N.,andEstelle,M.(2010). quired for hypercompaction of mitotic chromosomes in human Auxinperception—structuralinsights.ColdSpringHarb.Perspect. cells.NucleicAcidsRes.42:4414–4426. Biol.2:a005546. Feng, Z., et al. (2014). Multigeneration analysis reveals the in- Carranco, R., Espinosa, J.M., Prieto-Dapena, P., Almoguera, C., heritance, specificity, and patterns of CRISPR/Cas-induced gene andJordano,J.(2010).Repressionbyanauxin/indoleaceticacid modificationsinArabidopsis.Proc.Natl.Acad.Sci.USA111:4632– protein connects auxin signaling with heat shock factor-mediated 4637. seedlongevity.Proc.Natl.Acad.Sci.USA107:21908–21913. Finet,C.,andJaillais,Y.(2012).Auxology:whenauxinmeetsplant Causier, B., Ashworth, M., Guo, W., and Davies, B. (2012). The evo-devo.Dev.Biol.369: 19–31. TOPLESS interactome: a framework for gene repression in Arabi- Firn, R.D., and Digby, J.(1980). The establishment of tropic curva- dopsis.PlantPhysiol.158:423–438. turesinplants.Annu.Rev.PlantPhysiol.31:131–148. Chaabouni,S.,Jones,B.,Delalande,C.,Wang,H.,Li,Z.,Mila,I., Fukaki,H.,Tameda,S.,Masuda,H.,andTasaka,M.(2002).Lateral Frasse, P., Latché, A., Pech, J.-C., and Bouzayen, M. (2009). root formation is blocked by a gain-of-function mutation in the Sl-IAA3,atomatoAux/IAAatthecrossroadsofauxinandethylenesig- SOLITARY-ROOT/IAA14geneofArabidopsis.PlantJ.29:153–168. nallinginvolvedindifferentialgrowth.J.Exp.Bot.60:1349–1362. Gilkerson,J.,Hu,J.,Brown,J.,Jones,A.,Sun,T.P.,andCallis,J. Chapman, E.J., and Estelle, M. (2009). Mechanism of auxin-regu- (2009).Isolationandcharacterizationofcul1-7,arecessivealleleof latedgeneexpressioninplants.Annu.Rev.Genet.43:265–285. CULLIN1thatdisruptsSCFfunctionattheCterminusofCUL1in Chen, J.-G., Ullah, H., Young, J.C., Sussman, M.R., and Jones, Arabidopsisthaliana.Genetics181:945–963. A.M.(2001).ABP1isrequiredfororganizedcellelongationanddivision Gray, W.M., del Pozo, J.C., Walker, L., Hobbie, L., Risseeuw, E., inArabidopsisembryogenesis.GenesDev.15:902–911. Banks,T.,Crosby,W.L.,Yang,M.,Ma,H.,andEstelle,M.(1999). Chen, X., Naramoto, S., Robert, S., Tejos, R., Löfke, C., Lin, D., IdentificationofanSCFubiquitin-ligasecomplexrequiredforauxin Yang,Z.,andFriml,J.(2012).ABP1andROP6GTPasesignaling responseinArabidopsisthaliana.GenesDev.13:1678–1691. regulateclathrin-mediatedendocytosisinArabidopsisroots.Curr. Gray, W.M., Hellmann, H., Dharmasiri, S., and Estelle, M. (2002). Biol.22:1326–1332. RoleoftheArabidopsisRING-H2proteinRBX1inRUBmodification Chini, A., Fonseca, S., Fernández, G., Adie, B., Chico, J.M., andSCFfunction.PlantCell14:2137–2144. Lorenzo, O., García-Casado, G., López-Vidriero, I., Lozano, F.M., Gray, W.M., Kepinski, S., Rouse, D., Leyser, O., and Estelle, M. Ponce,M.R.,Micol,J.L.,andSolano,R.(2007).TheJAZfamilyofre- (2001).AuxinregulatesSCF(TIR1)-dependentdegradationofAUX/ pressorsisthemissinglinkinjasmonatesignalling.Nature448:666–671. IAAproteins.Nature414:271–276. Cho, H., et al. (2014). A secreted peptide acts on BIN2-mediated Greenham,K.,Santner,A.,Castillejo,C.,Mooney,S.,Sairanen,I., phosphorylationofARFstopotentiateauxinresponseduringlateral Ljung, K., and Estelle, M. (2011). The AFB4 auxin receptor is rootdevelopment.Nat.CellBiol.16:66–76. anegativeregulatorofauxinsignalinginseedlings.Curr.Biol.21: Cobb, A.H., and Reade, J.P.H. (2010). Herbicides and Plant Physi- 520–525. ology.(Hoboken,NJ:Wiley-Blackwell). Guilfoyle,T.J.(2015).ThePB1domaininauxinresponsefactorand Cong,L.,Ran, F.A.,Cox, D., Lin, S.,Barretto, R., Habib, N., Hsu, Aux/IAAproteins:aversatileproteininteractionmoduleintheauxin P.D., Wu, X., Jiang, W., Marraffini, L.A., and Zhang, F. (2013). response.PlantCell27:33–43. MultiplexgenomeengineeringusingCRISPR/Cassystems.Science Guilfoyle,T.J.,andHagen,G.(2007).Auxinresponsefactors.Curr. 339:819–823. Opin.PlantBiol.10:453–460. Darwin, C., and Darwin, F.E. (1880). The Power of Movement in Guilfoyle,T.J.,andHagen,G.(2012).GettingagraspondomainIII/IV Plants.(NewYork:DAppletonandCo.). responsible for Auxin Response Factor-IAA protein interactions. DelloIoio,R.,Nakamura,K.,Moubayidin,L.,Perilli,S.,Taniguchi, PlantSci.190:82–88. M., Morita, M.T., Aoyama, T., Costantino, P., and Sabatini, S. Haagen-Smit, A.J., Dandliker, W.B., Wittwer, S.H., and Murneek, (2008).Ageneticframeworkforthecontrolofcelldivisionanddif- A.E. (1946). Isolation of 3-indoleacetic acid from immature corn ferentiationintherootmeristem.Science322:1380–1384. kernels.Am.J.Bot.33:118–120. SCFTIR1/AFB-BasedAuxinPerception 17 Hagen,G.,andGuilfoyle,T.(2002).Auxin-responsivegeneexpres- Lau, S., Shao, N., Bock, R., Jürgens, G., and De Smet, I. (2009). sion:genes,promotersandregulatoryfactors.PlantMol.Biol.49: Auxinsignalinginalgallineages:factormyth?TrendsPlantSci.14: 373–385. 182–188. Hamann,T., Mayer, U., and Jürgens, G. (1999). The auxin-insensitive Lavy,M.,Prigge,M.J.,Tigyi,K.,andEstelle,M.(2012).Thecyclo- bodenlosmutationaffectsprimaryrootformationandapical-basal philin DIAGEOTROPICA has a conserved role in auxin signaling. patterning in the Arabidopsis embryo. Development 126: 1387– Development139:1115–1124. 1395. Lee, S., Sundaram, S., Armitage, L., Evans, J.P., Hawkes, T., Hardtke, C.S., and Berleth, T. (1998). The Arabidopsis gene MO- Kepinski, S., Ferro, N., and Napier, R.M. (2014). Defining bind- NOPTEROSencodesatranscriptionfactormediatingembryoaxis ingefficiencyandspecificityofauxinsforSCF(TIR1/AFB)-Aux/IAA formationandvasculardevelopment.EMBOJ.17:1405–1411. co-receptorcomplexformation.ACSChem.Biol.9:673–682. Havens, K.A., Guseman, J.M., Jang, S.S., Pierre-Jerome, E., Li, J., et al. (2005). Arabidopsis H+-PPase AVP1 regulates auxin- Bolten, N., Klavins, E., and Nemhauser, J.L. (2012). A synthetic mediatedorgandevelopment.Science310:121–125. approach reveals extensive tunability of auxin signaling. Plant Li,J.F.,Norville,J.E.,Aach,J.,McCormack,M.,Zhang,D.,Bush, Physiol.160:135–142. J.,Church,G.M.,andSheen,J.(2013).Multiplexandhomologous Hellmann,H.,Hobbie,L.,Chapman,A.,Dharmasiri,S.,Dharmasiri, recombination-mediated genome editing in Arabidopsis and Nicotiana N.,delPozo,C.,Reinhardt,D.,andEstelle,M.(2003).Arabidopsis benthamianausingguideRNAandCas9.Nat.Biotechnol.31:688–691. AXR6encodesCUL1implicatingSCFE3ligasesinauxinregulation Liscum, E., and Reed, J.W. (2002). Genetics of Aux/IAA and ARF ofembryogenesis.EMBOJ.22:3314–3325. actioninplantgrowthanddevelopment.PlantMol.Biol.49:387–400. Hertel,R.,Thomson,K.-S.,andRusso,V.E.A.(1972).In-vitroauxin Long, J.A., Ohno, C., Smith, Z.R., and Meyerowitz, E.M.(2006). binding to particulate cell fractions from corn coleoptiles. Planta TOPLESSregulatesapicalembryonicfateinArabidopsis.Science 107:325–340. 312:1520–1523. Holland,A.J.,Fachinetti,D.,Han,J.S.,andCleveland,D.W.(2012). Lozano-Juste,J.,andCutler,S.R.(2014).Plantgenomeengineering Inducible,reversiblesystemfortherapidandcompletedegradation infullbloom.TrendsPlantSci.19:284–287. of proteins in mammalian cells. Proc. Natl. Acad. Sci. USA 109: Luerssen,H.,Kirik,V.,Herrmann,P.,andMiséra,S.(1998).FUS- E3350–E3357. CA3encodesaproteinwithaconservedVP1/AB13-likeB3domain Hori,K.,etal.(2014).Klebsormidiumflaccidumgenomerevealspri- whichisoffunctionalimportancefortheregulationofseedmatu- maryfactorsforplantterrestrialadaptation.Nat.Commun.5:3978. rationinArabidopsisthaliana.PlantJ.15: 755–764. Hyun,Y.,Kim,J.,Cho,S.W.,Choi,Y.,Kim,J.S.,andCoupland,G. Mähönen,A.P.,tenTusscher,K.,Siligato,R.,Smetana,O.,Díaz- (2015).Site-directedmutagenesisinArabidopsisthalianausingdi- Triviño,S.,Salojärvi,J.,Wachsman,G.,Prasad,K.,Heidstra,R., vidingtissue-targetedRGENoftheCRISPR/Cassystemtogener- andScheres,B.(2014).PLETHORAgradientformationmechanism ateheritablenullalleles.Planta241:271–284. separatesauxinresponses.Nature515:125–129. Jiang,W.,Yang,B.,andWeeks,D.P.(2014).EfficientCRISPR/Cas9- Mali, P., Yang, L., Esvelt, K.M., Aach, J., Guell, M., DiCarlo, J.E., mediated gene editing in Arabidopsis thaliana and inheritance of Norville, J.E., and Church, G.M. (2013). RNA-guided human ge- modifiedgenesintheT2andT3generations.PLoSONE9:e99225. nomeengineeringviaCas9.Science339:823–826. Jones,A.M.,Im,K.H.,Savka,M.A.,Wu,M.J.,DeWitt,N.G.,Shillito, Mauseth, J.D. (1991). Botany: An Introduction to Plant Biology. R.,andBinns,A.N.(1998).Auxin-dependentcellexpansionmedi- (Philadelphia:Saunders). atedbyoverexpressedauxin-bindingprotein1.Science282:1114– Mockaitis, K., and Estelle, M. (2008). Auxin receptors and plant 1117. development:anewsignalingparadigm.Annu.Rev.CellDev.Biol. Jönsson, H., Heisler, M.G., Shapiro, B.E., Meyerowitz, E.M., and 24:55–80. Mjolsness,E.(2006).Anauxin-drivenpolarizedtransportmodelfor Moon, J., Zhao, Y., Dai, X., Zhang, W., Gray, W.M., Huq, E., and phyllotaxis.Proc.Natl.Acad.Sci.USA103:1633–1638. Estelle,M.(2007).AnewCULLIN1mutanthasalteredresponses Jurado,S.,Abraham,Z.,Manzano,C.,López-Torrejón,G.,Pacios, tohormonesandlightinArabidopsis.PlantPhysiol.143:684–696. L.F.,andDelPozo,J.C.(2010).TheArabidopsiscellcycleF-box Nagpal, P., Walker, L.M., Young, J.C., Sonawala, A., Timpte, C., proteinSKP2Abindstoauxin.PlantCell22:3891–3904. Estelle,M.,andReed,J.W.(2000).AXR2encodesamemberofthe Jürgens,G.(1995).Axisformationinplantembryogenesis:cuesand Aux/IAAproteinfamily.PlantPhysiol.123:563–574. clues.Cell81:467–470. Nanao, M.H., et al. (2014). Structural basis for oligomerization of Kanke, M., Kodama, Y., Takahashi, T.S., Nakagawa, T., and auxintranscriptionalregulators.Nat.Commun.5:3617. Masukata,H.(2012).Mcm10playsanessentialroleinoriginDNA Nishimura, K., Fukagawa, T., Takisawa, H., Kakimoto, T., and unwinding after loading of the CMG components. EMBO J. 31: Kanemaki,M.(2009).Anauxin-baseddegronsystemfortherapid 2182–2194. depletionofproteinsinnonplantcells.Nat.Methods6:917–922. Katsir,L.,Chung,H.S.,Koo,A.J.K.,andHowe,G.A.(2008).Jasm- Nishimura,K.,andKanemaki,M.(2014).Rapiddepletionofbudding onatesignaling:aconservedmechanismofhormonesensing.Curr. yeast proteins via the fusion of an auxin-inducible degron (AID). Opin.PlantBiol.11:428–435. Curr.Protoc.CellBiol.64:20.9.1–20.9.16. Kazan, K., and Manners, J.M. (2009). Linking development to de- Okushima,Y.,etal.(2005).FunctionalgenomicanalysisoftheAUXIN fense: auxin in plant-pathogen interactions. Trends Plant Sci. 14: RESPONSEFACTORgenefamilymembersinArabidopsisthaliana: 373–382. uniqueandoverlappingfunctionsofARF7andARF19.PlantCell17: Kepinski, S., and Leyser, O. (2005). The Arabidopsis F-box protein 444–463. TIR1isanauxinreceptor.Nature435:446–451. Ouellet,F.,Overvoorde,P.J.,andTheologis,A.(2001).IAA17/AXR3: Korasick,D.A.,Westfall,C.S.,Lee,S.G.,Nanao,M.H.,Dumas,R., biochemicalinsightintoanauxinmutantphenotype.PlantCell13: Hagen, G., Guilfoyle, T.J., Jez, J.M., and Strader, L.C. (2014). 829–841. MolecularbasisforAUXINRESPONSEFACTORproteininteraction Overvoorde, P.J., et al. (2005). Functional genomic analysis of the andthecontrolofauxinresponserepression.Proc.Natl.Acad.Sci. AUXIN/INDOLE-3-ACETIC ACID gene family members in Arabi- USA111:5427–5432. dopsisthaliana.PlantCell17:3282–3300. 18 ThePlantCell Paponov, I.A., Teale, W., Lang, D., Paponov, M., Reski, R., and Scheres, B. (1999). An auxin-dependent distal organizer of Rensing, S.A., and Palme, K. (2009). The evolution of nuclear patternandpolarityintheArabidopsisroot.Cell99:463–472. auxinsignalling.BMCEvol.Biol.9:126. Samejima,K.,Ogawa,H.,Ageichik,A.V.,Peterson,K.L.,Kaufmann,S. Paque,S.,Mouille,G.,Grandont,L.,Alabadí,D.,Gaertner,C.,Goyallon, H.,Kanemaki,M.T.,andEarnshaw,W.C.(2014).Auxin-inducedrapid A.,Muller,P.,Primard-Brisset,C.,Sormani,R.,Blázquez,M.A.,and degradation of Inhibitor of Caspase Activated DNase (ICAD) induces Perrot-Rechenmann,C.(2014).AUXINBINDINGPROTEIN1linkscell apoptoticDNAfragmentation,caspaseactivationandcelldeath.J.Biol. wallremodeling,auxinsignaling,andcellexpansioninArabidopsis.Plant Chem.289:31617–31623. Cell26:280–295. Salisbury,F.B.,andRoss,C.W.(1992).PlantPhysiology.(Belmont, Parry,G.,Calderon-Villalobos,L.I.,Prigge,M.,Peret,B.,Dharmasiri, CA:Wadsworth). S., Itoh, H., Lechner, E., Gray, W.M., Bennett, M., and Estelle, M. Sato, A., and Yamamoto, K.T. (2008). Overexpression of the non- (2009).ComplexregulationoftheTIR1/AFBfamilyofauxinreceptors. canonicalAux/IAAgenescausesauxin-relatedaberrantphenotypes Proc.Natl.Acad.Sci.USA106:22540–22545. inArabidopsis.Physiol.Plant.133:397–405. Pérez, A.C., and Goossens, A. (2013). Jasmonate signalling: Sauer, M., Balla, J., Luschnig, C., Wisniewska, J., Reinöhl, V., acopycatofauxinsignalling?PlantCellEnviron.36:2071–2084. Friml, J., and Benková, E. (2006). Canalization of auxin flow by Petersson, S.V., Johansson, A.I., Kowalczyk, M., Makoveychuk, Aux/IAA-ARF-dependentfeedbackregulationofPINpolarity.Genes A.,Wang,J.Y.,Moritz,T.,Grebe,M.,Benfey,P.N.,Sandberg,G., Dev.20:2902–2911. andLjung,K.(2009).AnauxingradientandmaximumintheAra- Schiml, S., Fauser, F., and Puchta, H. (2014). The CRISPR/Cas bidopsisrootapexshownbyhigh-resolutioncell-specificanalysis systemcanbeusedasnucleaseforinplantagenetargetingandas ofIAAdistributionandsynthesis.PlantCell21:1659–1668. pairednickasesfordirectedmutagenesisinArabidopsisresultingin Pierre-Jerome,E.,Jang,S.S.,Havens,K.A.,Nemhauser,J.L.,and heritableprogeny.PlantJ.80:1139–1150. Klavins,E.(2014).Recapitulationoftheforwardnuclearauxinre- Sheard,L.B.,etal.(2010).Jasmonateperceptionbyinositol-phosphate- sponse pathway in yeast. Proc. Natl. Acad. Sci. USA 111: 9407– potentiatedCOI1-JAZco-receptor.Nature468:400–405. 9412. Shimizu-Mitao,Y.,andKakimoto,T.(2014).Auxinsensitivitiesofall Ploense,S.E.,Wu,M.F.,Nagpal,P.,andReed,J.W.(2009).Again- Arabidopsis Aux/IAAs for degradation in the presence of every of-function mutation inIAA18 alters Arabidopsis embryonic apical TIR1/AFB.PlantCellPhysiol.55:1450–1459. patterning.Development136:1509–1517. Shin, R., Burch, A.Y., Huppert, K.A., Tiwari, S.B., Murphy, A.S., Prigge, M.J., Lavy, M., Ashton, N.W., and Estelle, M.(2010). Guilfoyle, T.J., and Schachtman, D.P. (2007). The Arabidopsis Physcomitrella patens auxin-resistant mutants affect conserved transcription factor MYB77 modulates auxin signal transduction. elementsofanauxin-signalingpathway.Curr.Biol.20:1907–1912. PlantCell19:2440–2453. Rademacher,E.H.,Lokerse,A.S.,Schlereth,A.,Llavata-Peris,C.I., Shinohara,N.,Taylor,C.,andLeyser,O.(2013).Strigolactonecan Bayer,M.,Kientz,M.,FreireRios,A.,Borst,J.W.,Lukowitz,W., promoteorinhibitshootbranchingbytriggeringrapiddepletionof Jürgens,G.,andWeijers,D.(2012).Differentauxinresponsemachineries theauxineffluxproteinPIN1fromtheplasmamembrane.PLoSBiol. controldistinctcellfatesintheearlyplantembryo.Dev.Cell17:211–222. 11:e1001474. Ramos, J.A., Zenser, N., Leyser, O., and Callis, J. (2001). Rapid Skaar,J.R.,Pagan,J.K.,andPagano,M. (2013).Mechanismsand degradationofauxin/indoleaceticacidproteinsrequiresconserved functionofsubstraterecruitmentbyF-boxproteins.Nat.Rev.Mol. aminoacidsofdomainIIandisproteasomedependent.PlantCell CellBiol.14:369–381. 13:2349–2360. Sorefan,K.,Girin,T.,Liljegren,S.J.,Ljung,K.,Robles,P.,Galván- Raven, P.H., Evert, R.F., and Eichhorn, S.E. (1992). Biology of Ampudia, C.S., Offringa, R., Friml, J., Yanofsky, M.F., and Plants,5thed.(NewYork:WorthPublishers). Østergaard, L. (2009). A regulated auxin minimum is required for Reed,J.W.(2001).RolesandactivitiesofAux/IAAproteinsinArabi- seeddispersalinArabidopsis.Nature459:583–586. dopsis.TrendsPlantSci.6:420–425. Sterling,T.M.,andHall,J.C.(1997).Mechanismofactionofnatural Reinhardt, D., Mandel, T., and Kuhlemeier, C. (2000). Auxin regu- auxinsandtheauxinicherbicides.InHerbicideActivity:Toxicology, latestheinitiationandradialpositionofplantlateralorgans.Plant Biochemistry, and Molecular Biology, R.M. Roe, J.D. Burton, and Cell12:507–518. R.J.Kuhr,eds(Amsterdam:IOSPress),pp.111–141. Reinhardt,D.,Pesce,E.-R.,Stieger,P.,Mandel,T.,Baltensperger, Su,L.,Bassa,C.,Audran,C.,Mila,I.,Cheniclet,C.,Chevalier,C., K., Bennett, M., Traas, J., Friml, J., and Kuhlemeier, C.(2003). Bouzayen, M., Roustan, J.P., and Chervin, C. (2014). The auxin Regulationofphyllotaxisbypolarauxintransport.Nature426:255– Sl-IAA17 transcriptional repressor controls fruit size via the regu- 260. lation of endoreduplication-related cellexpansion. PlantCell Physiol. Remington,D.L.,Vision,T.J.,Guilfoyle,T.J.,andReed,J.W.(2004). 55:1969–1976. ContrastingmodesofdiversificationintheAux/IAAandARFgene Szemenyei, H., Hannon, M., and Long, J.A. (2008). TOPLESS me- families.PlantPhysiol.135:1738–1752. diates auxin-dependent transcriptional repression during Arabi- Rogg, L.E., Lasswell, J., and Bartel, B. (2001). A gain-of-function dopsisembryogenesis.Science319:1384–1386. mutationinIAA28suppresseslateralrootdevelopment.PlantCell Tan,X.,Calderon-Villalobos,L.I.,Sharon,M.,Zheng,C.,Robinson, 13:465–480. C.V.,Estelle,M.,andZheng,N.(2007).Mechanismofauxinper- Rouse, D., Mackay, P., Stirnberg, P., Estelle, M., and Leyser, O. ceptionbytheTIR1ubiquitinligase.Nature446:640–645. (1998). Changes in auxin response from mutations in an AUX/IAA Tatematsu, K., Kumagai, S., Muto, H., Sato, A., Watahiki, M.K., gene.Science279:1371–1373. Harper, R.M., Liscum, E., and Yamamoto, K.T. (2004). MASSU- Ruegger, M., Dewey, E., Gray, W.M., Hobbie, L., Turner, J., and GU2encodesAux/IAA19,anauxin-regulatedproteinthatfunctions Estelle, M. (1998). The TIR1 protein of Arabidopsis functions in together with the transcriptional activator NPH4/ARF7 to regulate auxin response and is related to human SKP2 and yeast grr1p. differentialgrowthresponsesofhypocotylandformationoflateral GenesDev.12:198–207. rootsinArabidopsisthaliana.PlantCell16:379–393. Sabatini, S., Beis, D., Wolkenfelt, H., Murfett, J., Guilfoyle, T., Thimman, K.V. (1977). Hormone Action in the Whole Life of Plants. Malamy,J., Benfey,P.,Leyser,O.,Bechtold, N., Weisbeek,P., (Amherst,MA:UniversityofMassachusettsPress).

Description:
many other cullin-based E3 ligases, auxin enhances the interaction between SCFTIR1/AFB and the dII by directly binding to TIR1, dem-onstrating that TIR1 is the long
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.