ebook img

Time Series Analysis in Climatology and Related Sciences PDF

253 Pages·2021·10.25 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Time Series Analysis in Climatology and Related Sciences

Progress in Geophysics Victor Privalsky Time Series Analysis in Climatology and Related Sciences Progress in Geophysics Series Editor AlexanderB.Rabinovich,P.P.ShirshovInstituteofOceanology,RussianAcademy of Sciences, Moskva, Russia The “Progress in Geophysics” book series seeks to publish a broad portfolio of scientific books, aiming at researchers, students in geophysics. The series includes peer-reviewed monographs, edited volumes, textbooks, and conference proceed- ings. It covers the entire research area including, but not limited to, applied geophysics, computational geophysics, electrical and electromagnetic geophysics, geodesy, geodynamics, geomagnetism, gravity, lithosphere research, paleomag- netism, planetology, tectonophysics, thermal geophysics, and seismology. More information about this series at http://www.springer.com/series/15922 Victor Privalsky Time Series Analysis in Climatology and Related Sciences 123 Victor Privalsky Water Problems Institute Russian Academy of Sciences Moscow,Russia ISSN 2523-8388 ISSN 2523-8396 (electronic) Progressin Geophysics ISBN978-3-030-58054-4 ISBN978-3-030-58055-1 (eBook) https://doi.org/10.1007/978-3-030-58055-1 ©SpringerNatureSwitzerlandAG2021 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained hereinorforanyerrorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregard tojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland To the memory of my daughter Maria Privalsky and my teacher Akiva Yaglom Acknowledgements The author is sincerely indebted to Alexander Benilov, Sergei Dobrovolski, M.Fortus,MaxMalkin,SergeiMuzylev,JulieRich,andTatyanaVyruchalkinafor their valuable help. Special thanks are to Alexander Rabinovich for recommending this book to Springer. vii Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 Basics of Scalar Random Processes. . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1 Basic Statistical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 Deterministic Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3 Random Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.4 Covariance and Correlation Functions . . . . . . . . . . . . . . . . . . . 15 2.5 Spectral Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.6 Examples of Geophysical Time Series and Their Statistics . . . . 19 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3 Time and Frequency Domain Models of Scalar Time Series. . . . . . 27 3.1 Nonparametric Spectral Analysis . . . . . . . . . . . . . . . . . . . . . . . 28 3.2 Parametric Models of Time Series . . . . . . . . . . . . . . . . . . . . . . 29 3.3 Parametric Spectral Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.4 Determining the Order of Autoregressive Models . . . . . . . . . . . 34 3.5 Comparison of Autoregressive and Nonparametric Spectral Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.6 Advantages and Disadvantages of Autoregressive Analysis (Scalar Case) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4 Practical Analysis of Time Series . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.1 Selecting the Sampling Interval . . . . . . . . . . . . . . . . . . . . . . . . 46 4.2 Linear Trend and Its Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.3 Testing for Stationarity and Ergodicity. . . . . . . . . . . . . . . . . . . 48 4.4 Linear Filtering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 ix x Contents 4.5 Frequency Resolution of Autoregressive Spectral Analysis . . . . 55 4.6 Example of AR Analysis in Time and Frequency Domains. . . . 58 Appendix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5 Stochastic Models and Spectra of Climatic and Related Time Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5.1 Properties of Climate Indices. . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.2 Properties of Time Series of Spatially Averaged Surface Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5.3 Quasi-Biennial Oscillation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 5.4 Other Oscillations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Appendix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6 Statistical Forecasting of Geophysical Processes . . . . . . . . . . . . . . . 75 6.1 General Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 6.2 Method of Extrapolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.3 Example 1. Global Annual Temperature. . . . . . . . . . . . . . . . . . 82 6.4 Example 2. Quasi-Biennial Oscillation . . . . . . . . . . . . . . . . . . . 85 6.5 Example 3. ENSO Components. . . . . . . . . . . . . . . . . . . . . . . . 88 6.6 Example 4. Madden–Julian Oscillation. . . . . . . . . . . . . . . . . . . 91 Appendix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 7 Bivariate Time Series Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 7.1 Elements of Bivariate Time Series Analysis . . . . . . . . . . . . . . . 98 7.1.1 Bivariate Autoregressive Models in Time Domain . . . . 98 7.1.2 Bivariate Autoregressive Models in Frequency Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 7.1.3 Reliability of Autoregressive Estimates of Frequency-Dependent Quantities. . . . . . . . . . . . . . . 106 7.2 Granger Causality and Feedback . . . . . . . . . . . . . . . . . . . . . . . 107 7.3 On Properties of Software for Analysis of Multivariate Time Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 8 Teleconnection Research and Bivariate Extrapolation . . . . . . . . . . 113 8.1 Example 1. The ENSO Teleconnection . . . . . . . . . . . . . . . . . . 114 8.2 Example 2. Teleconnections Between ENSO and AST . . . . . . . 120 8.2.1 Time Domain Analysis—ENSO and Spatially Averaged Temperature . . . . . . . . . . . . . . . . . . . . . . . . 120 8.2.2 Frequency Domain Analysis . . . . . . . . . . . . . . . . . . . . 126 8.3 Example 3. Bivariate Extrapolation of Madden–Julian Oscillation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 Contents xi Appendix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 9 Reconstruction of Time Series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 9.2 Methods of Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 9.2.1 Traditional Correlation/Regression Reconstruction (CRR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 9.2.2 Autoregressive Reconstruction Method (ARR). . . . . . . 142 9.3 Verification of the Autoregressive Reconstruction Method. . . . . 144 9.3.1 Reconstruction Example: A Climatic Type Process. . . . 145 9.4 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 150 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 10 Frequency Domain Structure and Feedbacks in QBO Time Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 11 Verification of General Circulation Models. . . . . . . . . . . . . . . . . . . 163 11.1 Verifying the Structure of ENSO. . . . . . . . . . . . . . . . . . . . . . . 165 11.1.1 Linear Trend Rates. . . . . . . . . . . . . . . . . . . . . . . . . . . 168 11.1.2 Mean Values and Standard Deviations. . . . . . . . . . . . . 168 11.1.3 Probability Density. . . . . . . . . . . . . . . . . . . . . . . . . . . 169 11.1.4 Time and Frequency Domain Properties . . . . . . . . . . . 169 11.2 Verification of ENSO Influence upon Global Temperature . . . . 174 11.3 Verifications of Properties of Surface Temperature Over CONUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 11.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 12 Applications to Proxy Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 12.2 Greenland Ice Cores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 12.3 Antarctic Ice Cores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 12.4 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 201 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 13 Application to Sunspot Numbers and Total Solar Irradiance . . . . . 205 13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 13.2 Properties of Sunspot Number Time Series. . . . . . . . . . . . . . . . 207 13.3 Properties of Total Solar Irradiance Time Series . . . . . . . . . . . . 212 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 14 Multivariate Time and Frequency Domain Analysis. . . . . . . . . . . . 221 14.1 Time Domain Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 14.2 Frequency Domain Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 223

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.