ebook img

Third Edition Mathematical Proofs A Transition to Advanced Mathematics Gary Chartrand PDF

489 Pages·2012·3.45 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Third Edition Mathematical Proofs A Transition to Advanced Mathematics Gary Chartrand

T h i r d E d i t i o n Mathematical Proofs A Transition to Advanced Mathematics Gary Chartrand WesternMichiganUniversity Albert D. Polimeni StateUniversityofNewYorkatFredonia Ping Zhang WesternMichiganUniversity Boston Columbus Indianapolis NewYork SanFrancisco UpperSaddleRiver Amsterdam CapeTown Dubai London Madrid MilanMunich Paris Montreal Toronto Delhi MexicoCity SaoPaulo Sydney HongKong Seoul Singapore Taipei Tokyo EditorinChief:DeirdreLynch SeniorAcquisitionsEditor:WilliamHoffman AssistantEditor:BrandonRawnsley ExecutiveMarketingManager:JeffWeidenaar MarketingAssistant:CaitlinCrain SeniorProductionProjectManager:BethHouston Manager,CoverVisualResearchandPermissions:JayneConte CoverDesigner:SuzanneBehnke CoverArt:Shutterstock.com Full-ServiceProjectManagement:KailashJadli,Aptara®,Inc. Composition:Aptara®,Inc. Printer/Binder:CourierWestford CoverPrinter:Lehigh/Phoenix Creditsandacknowledgmentsborrowedfromothersourcesandreproduced,withpermission,in thistextbookappearontheappropriatepagewithintext. Copyright(cid:2)C 2013,2008,2003byPearsonEducation,Inc.Allrightsreserved.Manufacturedin theUnitedStatesofAmerica.ThispublicationisprotectedbyCopyright,andpermissionshould beobtainedfromthepublisherpriortoanyprohibitedreproduction,storageinaretrievalsystem, ortransmissioninanyformorbyanymeans,electronic,mechanical,photocopying,recording, orlikewise.Toobtainpermission(s)tousematerialfromthiswork,pleasesubmitawritten requesttoPearsonEducation,Inc.,PermissionsDepartment,OneLakeStreet,UpperSaddle River,NewJersey07458,oryoumayfaxyourrequestto201-236-3290. Manyofthedesignationsbymanufacturersandsellerstodistinguishtheirproductsareclaimed astrademarks.Wherethosedesignationsappearinthisbook,andthepublisherwasawareofa trademarkclaim,thedesignationshavebeenprintedininitialcapsorallcaps. LibraryofCongressCataloging-in-PublicationData Chartrand,Gary. Mathematicalproofs:atransitiontoadvancedmathematics/GaryChartrand, AlbertD.Polimeni,PingZhang.–3rded. p. cm. Includesbibliographicalreferencesandindex. ISBN-13:978-0-321-79709-4 ISBN-10:0-321-79709-4 1.Prooftheory—Textbooks. I.Polimeni,AlbertD.,1938– II.Zhang,Ping, 1957– III.Title. QA9.54.C48 2013 511.3(cid:3)6—dc23 2012012552 10987654321—CW—1615141312 ISBN-13:978-0-321-79709-4 ISBN-10: 0-321-79709-4 To the memory of my mother and father G.C. the memory of my uncle Joe and my brothers John and Rocky A.D.P. my mother and the memory of my father P.Z. Contents 0 Communicating Mathematics 1 LearningMathematics 2 WhatOthersHaveSaidAboutWriting 4 MathematicalWriting 5 UsingSymbols 6 WritingMathematicalExpressions 8 CommonWordsandPhrasesinMathematics 10 SomeClosingCommentsAboutWriting 12 1 Sets 14 1.1 DescribingaSet 14 1.2 Subsets 18 1.3 SetOperations 21 1.4 IndexedCollectionsofSets 24 1.5 PartitionsofSets 27 1.6 CartesianProductsofSets 28 ExercisesforChapter1 29 2 Logic 37 2.1 Statements 37 2.2 TheNegationofaStatement 39 2.3 TheDisjunctionandConjunctionofStatements 41 2.4 TheImplication 42 2.5 MoreonImplications 44 2.6 TheBiconditional 47 2.7 TautologiesandContradictions 49 iv Contents v 2.8 LogicalEquivalence 51 2.9 SomeFundamentalPropertiesofLogicalEquivalence 53 2.10 QuantifiedStatements 55 2.11 CharacterizationsofStatements 63 ExercisesforChapter2 64 3 Direct Proof and Proof by Contrapositive 77 3.1 TrivialandVacuousProofs 78 3.2 DirectProofs 80 3.3 ProofbyContrapositive 84 3.4 ProofbyCases 89 3.5 ProofEvaluations 92 ExercisesforChapter3 93 4 More on Direct Proof and Proof by Contrapositive 99 4.1 ProofsInvolvingDivisibilityofIntegers 99 4.2 ProofsInvolvingCongruenceofIntegers 103 4.3 ProofsInvolvingRealNumbers 105 4.4 ProofsInvolvingSets 108 4.5 FundamentalPropertiesofSetOperations 111 4.6 ProofsInvolvingCartesianProductsofSets 113 ExercisesforChapter4 114 5 Existence and Proof by Contradiction 120 5.1 Counterexamples 120 5.2 ProofbyContradiction 124 5.3 AReviewofThreeProofTechniques 130 5.4 ExistenceProofs 132 5.5 DisprovingExistenceStatements 136 ExercisesforChapter5 137 6 Mathematical Induction 142 6.1 ThePrincipleofMathematicalInduction 142 6.2 AMoreGeneralPrincipleofMathematicalInduction 151 6.3 ProofbyMinimumCounterexample 158 6.4 TheStrongPrincipleofMathematicalInduction 161 ExercisesforChapter6 165 vi Contents 7 Prove or Disprove 170 7.1 ConjecturesinMathematics 170 7.2 RevisitingQuantifiedStatements 173 7.3 TestingStatements 178 ExercisesforChapter7 185 8 Equivalence Relations 192 8.1 Relations 192 8.2 PropertiesofRelations 193 8.3 EquivalenceRelations 196 8.4 PropertiesofEquivalenceClasses 198 8.5 CongruenceModulon 202 8.6 TheIntegersModulon 207 ExercisesforChapter8 210 9 Functions 216 9.1 TheDefinitionofFunction 216 9.2 TheSetofAllFunctionsfrom Ato B 219 9.3 One-to-OneandOntoFunctions 220 9.4 BijectiveFunctions 222 9.5 CompositionofFunctions 225 9.6 InverseFunctions 229 9.7 Permutations 232 ExercisesforChapter9 234 10 Cardinalities of Sets 242 10.1 NumericallyEquivalentSets 243 10.2 DenumerableSets 244 10.3 UncountableSets 250 10.4 ComparingCardinalitiesofSets 255 10.5 TheSchro¨der–BernsteinTheorem 258 ExercisesforChapter10 262 11 Proofs in Number Theory 266 11.1 DivisibilityPropertiesofIntegers 266 11.2 TheDivisionAlgorithm 267 Contents vii 11.3 GreatestCommonDivisors 271 11.4 TheEuclideanAlgorithm 272 11.5 RelativelyPrimeIntegers 275 11.6 TheFundamentalTheoremofArithmetic 277 11.7 ConceptsInvolvingSumsofDivisors 280 ExercisesforChapter11 281 12 Proofs in Calculus 288 12.1 LimitsofSequences 288 12.2 InfiniteSeries 295 12.3 LimitsofFunctions 300 12.4 FundamentalPropertiesofLimitsofFunctions 307 12.5 Continuity 312 12.6 Differentiability 314 ExercisesforChapter12 317 13 Proofs in Group Theory 322 13.1 BinaryOperations 322 13.2 Groups 326 13.3 PermutationGroups 330 13.4 FundamentalPropertiesofGroups 333 13.5 Subgroups 336 13.6 IsomorphicGroups 340 ExercisesforChapter13 344 14 Proofs in Ring Theory (Online) 14.1 Rings 14.2 ElementaryPropertiesofRings 14.3 Subrings 14.4 IntegralDomains 14.5 Fields ExercisesforChapter14 15 Proofs in Linear Algebra (Online) 15.1 PropertiesofVectorsin3-Space 15.2 VectorSpaces 15.3 Matrices 15.4 SomePropertiesofVectorSpaces viii Contents 15.5 Subspaces 15.6 SpansofVectors 15.7 LinearDependenceandIndependence 15.8 LinearTransformations 15.9 PropertiesofLinearTransformations ExercisesforChapter15 16 Proofs in Topology (Online) 16.1 MetricSpaces 16.2 OpenSetsinMetricSpaces 16.3 ContinuityinMetricSpaces 16.4 TopologicalSpaces 16.5 ContinuityinTopologicalSpaces ExercisesforChapter16 Answers and Hints to Selected Odd-Numbered Exercises in Chapters 14–16 (online) Answers and Hints to Odd-Numbered Section Exercises 351 References 394 Index of Symbols 395 Index 396 PREFACE TO THE THIRD EDITION Aswementionedintheprefacesofthefirsttwoeditions,becausetheteachingofcalculus in many colleges and universities has become more problem-oriented with added em- phasisontheuseofcalculatorsandcomputers,thetheoreticalgapbetweenthematerial presentedincalculusandthemathematicalbackgroundexpected(oratleasthopedfor) inmoreadvancedcoursessuchasabstractalgebraandadvancedcalculushaswidened. In an attempt to narrow this gap and to better prepare students for the more abstract mathematicscoursestofollow,manycollegesanduniversitieshaveintroducedcourses that are now commonly called transition courses. In these courses, students are intro- ducedtoproblemswhosesolutioninvolvesmathematicalreasoningandaknowledgeof prooftechniquesandwritingclearproofs.Topicssuchasrelations,functionsandcardi- nalitiesofsetsareencounteredthroughouttheoreticalmathematicscourses.Inaddition, transition courses often include theoretical aspects of number theory, abstract algebra, andcalculus.Thistextbookhasbeenwrittenforsuchacourse. The idea for this textbook originated in the early 1980s, long before transition courses became fashionable, during the supervising of undergraduate mathematics re- search projects. We came to realize that even advanced undergraduates lack a sound understanding of proof techniques and have difficulty writing correct and clear proofs. Atthattime,asetofnoteswasdevelopedforthesestudents.Thiswasfollowedbythe introduction of a transition course, for which a more detailed set of notes was written. Thefirsteditionofthisbookemanatedfromthesenotes,whichinturnhasledtoasecond editionandnowthisthirdedition. Whileunderstandingproofsandprooftechniquesandwritinggoodproofsaremajor goalshere,thesearenotthingsthatcanbeaccomplishedtoanygreatdegreeinasingle courseduringasinglesemester.Thesemustcontinuetobeemphasizedandpracticedin succeedingmathematicscourses. Our Approach Sincethistextbookoriginatedfromnotesthatwerewrittenexclusivelyforundergradu- atestohelpthemunderstandprooftechniquesandtowritegoodproofs,thisisthetone ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.