ebook img

Thinking Geometrically: A Survey of Geometries PDF

584 Pages·2015·5.64 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Thinking Geometrically: A Survey of Geometries

Thinking Geometrically A Survey of Geometries c 2015by ⃝ TheMathematicalAssociationofAmerica(Incorporated) LibraryofCongressControlNumber:2015936100 PrintISBN:978-1-93951-208-6 ElectronicISBN:978-1-61444-619-4 PrintedintheUnitedStatesofAmerica CurrentPrinting(lastdigit): 10 9 8 7 6 5 4 3 2 1 Thinking Geometrically A Survey of Geometries Thomas Q. Sibley St. John’s University Publishedanddistributedby TheMathematicalAssociationofAmerica CouncilonPublicationsandCommunications JenniferJ.Quinn,Chair CommitteeonBooks FernandoGouveˆa,Chair MAATextbooksEditorialBoard StanleyE.Seltzer,Editor MatthiasBeck RichardE.Bedient OttoBretscher HeatherAnnDye CharlesR.Hampton SuzanneLynneLarson JohnLorch SusanF.Pustejovsky MAATEXTBOOKS Bridge to Abstract Mathematics, Ralph W. Oberste-Vorth, Aristides Mouzakitis, and Bonita A.Lawrence CalculusDeconstructed:ASecondCourseinFirst-YearCalculus,ZbigniewH.Nitecki Calculus for the Life Sciences: A Modeling Approach, James L. Cornette and Ralph A. Ackerman Combinatorics:AGuidedTour,DavidR.Mazur Combinatorics:AProblemOrientedApproach,DanielA.Marcus ComplexNumbersandGeometry,Liang-shinHahn ACourseinMathematicalModeling,DouglasMooneyandRandallSwift CryptologicalMathematics,RobertEdwardLewand DifferentialGeometryanditsApplications,JohnOprea DistillingIdeas:AnIntroductiontoMathematicalThinking,BrianP.KatzandMichaelStarbird ElementaryCryptanalysis,AbrahamSinkov ElementaryMathematicalModels,DanKalman AnEpisodicHistoryofMathematics:MathematicalCultureThroughProblemSolving,Steven G.Krantz EssentialsofMathematics,MargieHale FieldTheoryanditsClassicalProblems,CharlesHadlock FourierSeries,RajendraBhatia GameTheoryandStrategy,PhilipD.Straffin Geometry Illuminated: An Illustrated Introduction to Euclidean and Hyperbolic Plane Geometry,MatthewHarvey GeometryRevisited,H.S.M.CoxeterandS.L.Greitzer GraphTheory:AProblemOrientedApproach,DanielMarcus AnInvitationtoRealAnalysis,LuisF.Moreno KnotTheory,CharlesLivingston Learning Modern Algebra: From Early Attempts to Prove Fermat’s Last Theorem, Al Cuoco andJosephJ.Rotman TheLebesgueIntegralforUndergraduates,WilliamJohnston LieGroups:AProblem-OrientedIntroductionviaMatrixGroups,HarrietPollatsek MathematicalConnections:ACompanionforTeachersandOthers,AlCuoco MathematicalInterestTheory,SecondEdition,LeslieJaneFedererVaalerandJamesW.Daniel MathematicalModelingintheEnvironment,CharlesHadlock MathematicsforBusinessDecisionsPart1:ProbabilityandSimulation(electronictextbook), RichardB.ThompsonandChristopherG.Lamoureux MathematicsforBusinessDecisionsPart2:CalculusandOptimization(electronictextbook), RichardB.ThompsonandChristopherG.Lamoureux MathematicsforSecondarySchoolTeachers,ElizabethG.Bremigan,RalphJ.Bremigan,and JohnD.Lorch TheMathematicsofChoice,IvanNiven TheMathematicsofGamesandGambling,EdwardPackel MathThroughtheAges,WilliamBerlinghoffandFernandoGouvea NoncommutativeRings,I.N.Herstein Non-EuclideanGeometry,H.S.M.Coxeter NumberTheoryThroughInquiry,DavidC.Marshall,EdwardOdell,andMichaelStarbird OrdinaryDifferentialEquations:fromCalculustoDynamicalSystems,V.W.Noonburg APrimerofRealFunctions,RalphP.Boas ARadicalApproachtoLebesgue’sTheoryofIntegration,DavidM.Bressoud ARadicalApproachtoRealAnalysis,2ndedition,DavidM.Bressoud RealInfiniteSeries,DanielD.BonarandMichaelKhoury,Jr. ThinkingGeometrically:ASurveyofGeometries,ThomasQ.Sibley TopologyNow!,RobertMesserandPhilipStraffin UnderstandingourQuantitativeWorld,JanetAndersenandToddSwanson MAAServiceCenter P.O.Box91112 Washington,DC20090-1112 1-800-331-1MAA FAX:1-240-396-5647 Contents Preface xv 1 EuclideanGeometry 1 1.1 OverviewandHistory........................................................................... 1 1.1.1 ThePythagoreansandZeno.......................................................... 2 1.1.2 PlatoandAristotle...................................................................... 4 1.1.3 ExercisesforSection1.1.............................................................. 5 1.2 Euclid’sApproachtoGeometryI:CongruenceandConstructions................... 10 1.2.1 Congruence............................................................................... 11 1.2.2 Constructions............................................................................ 12 1.2.3 EqualityofMeasure.................................................................... 15 1.2.4 TheGreekLegacy....................................................................... 16 1.2.5 ExercisesforSection1.2.............................................................. 17 1.2.6 Archimedes............................................................................... 25 1.3 Euclid’sApproachII:ParallelLines......................................................... 26 1.3.1 ExercisesforSection1.3.............................................................. 30 1.4 SimilarFigures.................................................................................... 33 1.4.1 ExercisesforSection1.4.............................................................. 37 1.5 Three-DimensionalGeometry................................................................. 42 1.5.1 Polyhedra.................................................................................. 42 1.5.2 GeodesicDomes........................................................................ 46 1.5.3 TheGeometryoftheSphere.......................................................... 48 1.5.4 ExercisesforSection1.5.............................................................. 51 1.5.5 BuckminsterFuller..................................................................... 59 1.5.6 ProjectsforChapter1.................................................................. 59 1.5.7 SuggestedReadings.................................................................... 65 2 AxiomaticSystems 67 2.1 FromEuclidtoModernAxiomatics......................................................... 67 2.1.1 OverviewandHistory.................................................................. 67 2.1.2 AxiomaticSystems..................................................................... 68 2.1.3 ASimplifiedAxiomaticSystem..................................................... 71 2.1.4 ExercisesforSection2.1.............................................................. 73 vii viii Contents 2.2 AxiomaticSystemsforEuclideanGeometry.............................................. 75 2.2.1 SMSGPostulates........................................................................ 76 2.2.2 Hilbert’sAxioms........................................................................ 77 2.2.3 ExercisesforSection2.2.............................................................. 78 2.2.4 DavidHilbert............................................................................. 81 2.3 ModelsandMetamathematics................................................................. 82 2.3.1 ExercisesforSection2.3.............................................................. 88 2.3.2 KurtGo¨del................................................................................ 94 2.3.3 ProjectsforChapter2.................................................................. 94 2.3.4 SuggestedReadings.................................................................... 96 3 AnalyticGeometry 97 3.1 OverviewandHistory........................................................................... 98 3.1.1 TheAnalyticModel.................................................................... 98 3.1.2 ExercisesforSection3.1.............................................................. 100 3.1.3 Rene´ Descartes.......................................................................... 104 3.2 ConicsandLocusProblems................................................................... 104 3.2.1 ExercisesforSection3.2.............................................................. 110 3.2.2 PierredeFermat......................................................................... 114 3.3 FurtherTopicsinAnalyticGeometry........................................................ 114 3.3.1 ParametricEquations................................................................... 114 3.3.2 PolarCoordinates....................................................................... 116 3.3.3 BarycentricCoordinates............................................................... 118 3.3.4 OtherAnalyticGeometries............................................................ 120 3.3.5 ExercisesforSection3.3.............................................................. 121 3.4 CurvesinComputer-AidedDesign.......................................................... 126 3.4.1 ExercisesforSection3.4.............................................................. 131 3.5 HigherDimensionalAnalyticGeometry.................................................... 133 3.5.1 AnalyticGeometryinRn.............................................................. 133 3.5.2 RegularPolytopes....................................................................... 137 3.5.3 ExercisesforSection3.5.............................................................. 140 3.5.4 GaspardMonge.......................................................................... 145 3.5.5 ProjectsforChapter3.................................................................. 145 3.5.6 SuggestedReadings.................................................................... 149 4 Non-EuclideanGeometries 151 4.1 OverviewandHistory........................................................................... 152 4.1.1 TheAdventofHyperbolicGeometry............................................... 153 4.1.2 ModelsofHyperbolicGeometry.................................................... 155 4.1.3 ExercisesforSection4.1.............................................................. 158 4.1.4 CarlFriedrichGauss.................................................................... 160 4.2 PropertiesofLinesandOmegaTriangles.................................................. 161 4.2.1 OmegaTriangles........................................................................ 164 4.2.2 ExercisesforSection4.2.............................................................. 167 4.2.3 NikolaiLobachevskyandJa´nosBolyai............................................ 169 Contents ix 4.3 SaccheriQuadrilateralsandTriangles....................................................... 169 4.3.1 ExercisesforSection4.3.............................................................. 173 4.3.2 OmarKhayyam.......................................................................... 174 4.3.3 GiovanniGirolamoSaccheri.......................................................... 175 4.4 Area,Distance,andDesigns................................................................... 176 4.4.1 ExercisesforSection4.4.............................................................. 183 4.5 SphericalandSingleEllipticGeometries................................................... 185 4.5.1 ExercisesforSection4.5.............................................................. 189 4.5.2 GeorgFriedrichBernhardRiemann................................................. 189 4.5.3 ProjectsforChapter4.................................................................. 190 4.5.4 SuggestedReadings.................................................................... 192 5 TransformationalGeometry 195 5.1 OverviewandHistory........................................................................... 195 5.1.1 ExercisesforSection5.1.............................................................. 200 5.2 Isometries.......................................................................................... 201 5.2.1 ClassifyingIsometries................................................................. 203 5.2.2 CongruenceandIsometries........................................................... 208 5.2.3 Klein’sDefinitionofGeometry...................................................... 209 5.2.4 ExercisesforSection5.2.............................................................. 209 5.2.5 FelixKlein................................................................................ 212 5.3 AlgebraicRepresentationofTransformations............................................. 213 5.3.1 Isometries................................................................................. 217 5.3.2 ExercisesforSection5.3.............................................................. 220 5.4 SimilaritiesandAffineTransformations.................................................... 223 5.4.1 Similarities................................................................................ 223 5.4.2 AffineTransformations................................................................ 226 5.4.3 IteratedFunctionSystems............................................................. 228 5.4.4 ExercisesforSection5.4.............................................................. 231 5.4.5 SophusLie................................................................................ 234 5.5 TransformationsinHigherDimensions;Computer-AidedDesign................... 235 5.5.1 IsometriesoftheSphere............................................................... 235 5.5.2 TransformationsinThreeandMoreDimensions................................ 239 5.5.3 Computer-AidedDesignandTransformations................................... 241 5.5.4 ExercisesforSection5.5.............................................................. 243 5.6 InversionsandtheComplexPlane........................................................... 245 5.6.1 ExercisesforSection5.6.............................................................. 252 5.6.2 AugustusMo¨bius........................................................................ 254 5.6.3 ProjectsforChapter5.................................................................. 254 5.6.4 SuggestedReadings.................................................................... 259 6 Symmetry 261 6.1 OverviewandHistory........................................................................... 262 6.1.1 ExercisesforSection6.1.............................................................. 264

Description:
This is a well written and comprehensive survey of college geometry that would serve a wide variety of courses for both mathematics majors and mathematics education majors. Great care and attention is spent on developing visual insights and geometric intuition while stressing the logical structure,
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.