ebook img

Efficient Merger of Binary Supermassive Black Holes in Non-Axisymmetric Galaxies PDF

0.26 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Efficient Merger of Binary Supermassive Black Holes in Non-Axisymmetric Galaxies

DRAFTVERSION5THFEBRUARY2008 PreprinttypesetusingLATEXstyleemulateapjv.6/22/04 EFFICIENTMERGEROFBINARYSUPERMASSIVEBLACKHOLESINNON-AXISYMMETRICGALAXIES PETERBERCZIK1,2,3,DAVIDMERRITT1,RAINERSPURZEM2,HANS-PETERBISCHOF4 Draftversion5thFebruary2008 Abstract Binarysupermassiveblackholesformnaturallyingalaxymergers,buttheirlong-termevolutionisuncertain. In sphericalgalaxies, N-bodysimulationsshowthat binaryevolutionstalls at separationsmuchtoo largefor significantemissionofgravitationalwaves(the“finalparsecproblem”). Here,wefollowthelong-termevolu- tionofamassivebinaryinmorerealistic,triaxialandrotatinggalaxymodels. Wefindthatthebinarydoesnot stall. ThebinaryhardeningratesthatweobservearesufficienttoallowcompletecoalescenceofbinarySBHs 6 in10Gyrorless,evenintheabsenceofcollisionalloss-conerefillingorgas-dynamicaltorques,thusproviding 0 0 apotentialsolutiontothefinalparsecproblem. 2 Subjectheadings: n a J 1. INTRODUCTION nearly spherical galaxy models. But it has been suggested 0 When two galaxies containing supermassive black holes (Merritt&Poon2004) thatbinaryhardeningmightbemuch moreefficientinnon-axisymmetricgalaxiesduetothequali- 3 (SBHs) merge, a binarySBH formsat the center of the new tativelydifferentcharacterofthestellarorbits. Here,wetest galaxy. The two SBHs can eventually coalesce, but only thatsuggestionbycarryingoutthefirstN-bodysimulationsof 1 after stellar- or gas-dynamical processes bring them close v enough together (<10 2 pc) that gravitational radiation is massive binaries in strongly non-axisymmetric galaxy mod- 8 emitted. There is∼stron−g circumstantial evidence that rapid els. We find that the hardeningrate is independentof N for 9 coalescence is the norm. For instance, no binary SBH has particle numbersup to at least 0.4 106. To the extent that × 6 ever been unambiguouslyobserved(Merritt&Milosavljevic ourgalaxymodelsaresimilartorealmergerremnants,these 1 2005). Furthermore, in a galaxy containing an uncoalesced resultsimplythatbinarySBHscanefficientlyhardenthrough 0 binary, mergers would eventually bring a third SBH into purely stellar-dynamical interactions in many galaxies, thus 6 the nucleus, precipitating a gravitational slingshot interac- providingaplausiblesolutiontothefinalparsecproblem. 0 tion that would eject one or more of the SBHs from the nu- / 2. METHOD h cleus(Mikkola&Valtonen1990;Volonteri,Haardt&Madau p 2003). This could produce off-center SBHs, and could Our N-body models were generated from the phase-space - also weakenthe tightcorrelationsthatare observedbetween distributionfunction o str SGBraHhammaesstaaln.d20g0a1la;xMyaprcroopneir&tieHsu(Fnter2r0a0re3s)e. &Merritt 2000; f(E,Lz)=const×(cid:16)e−b E−1(cid:17)e−bW 0Lz (1) :a rapUidnllyesbsrtihnegsbtihnearsymmalalsesrrSaBtiHoiisnteoxtaredmiseta,ndcyenamGicµa/lsfr2icfrtioomn (Lagoute&Longaretti1996). Here E =v2/2+F is the en- v ∼ ergyperunitmassofastar,F (v ,z)isthegravitationalpoten- thelargerSBH,whereµ M M /(M +M )isthebinaryre- Xi duced mass and s is the≡1D1vel2ocity1dispe2rsion of the stars. tialinthemeridionalplane,andLz istheangularmomentum per unit mass in the direction of the symmetry (z) axis; the At this separation – of order 1 pc – the two SBHs begin to r potentialissettozeroattheradiuswherethedensityfallsto a actlikea“hard”binary,ejectingpassingstarswithvelocities zero. The quantity in parentheses on the right hand side of largeenoughtoremovethemfromthenucleus. N-bodysim- equation(1)istheenergy-dependentKing(1966)distribution ulations (Makino&Funato 2004; Szell,Merritt&Mikkola function. Theadditional,angular-momentum-dependentfac- 2005; Berczik,Merritt&Spurzem 2005) show that contin- torhastheeffectofflatteningthemodelsandsimultaneously uedhardeningofthebinarytakesplaceataratethatdepends givingthemanetrotationaboutthezaxis. Thedegreeofflat- stronglyonthenumberNof“star”particlesusedinthesimu- teningcanbespecifiedviathedimensionlessrotationparam- lation. AsN increases,thehardeningratefalls,asexpectedif thebinary’slossconeisrepopulatedbystar-stargravitational eterw 0 9/(4p Gr 0)W 0, with r 0 thecentralmassdensity encounters (Yu 2002; Milosavljevic&Merritt 2003). When ofthega≡laxpy.Theparameterb determinesthecentralconcen- extrapolatedto the much larger N of real galaxies, these re- trationofthemodel;itsvaluewaschosensuchthatthespher- sults suggestthat binaryevolutionwouldgenerallystall (the icalisotropicmodelgeneratedfromequation(1)hadadimen- “finalparsecproblem”). sionlesscentralconcentrationW0=6(King1966). Hereand To date, N-bodysimulationsof thelong-termevolutionof belowweadoptstandardN-bodyunits, i.e. the gravitational binary SBHs have only been carried out using spherical or constantandtotalmassofthegalaxyareone,andthegalaxy’s energyis 1/4. − 1 Department ofPhysics, Rochester Institute ofTechnology, Rochester, ApairofmassiveparticlesrepresentingthetwoSBHswere NY14623,USA introduced into the models at time t =0. The two particles 2AstronomischesRechen-Institut,ZentrumfürAstronomie,Monchhofs- weregivenequalmasses,M =M M /2,andwereplaced trasse12-14,69120Heidelberg,Germany oncoplanar,circularorbitsa1tdista2n≡ces •0.3fromthegalaxy 3 Main Astronomical Observatory, National Academy of Sciences of ± Ukraine,ZabolotnohoStreet,27,Kiev,Ukraine,03680 centerintheequatorialplane. Inmostofthesimulationsde- 4DepartmentofComputerScience,RochesterInstituteofTechnology,102 scribedbelow,M =0.04. Thisisratherlargerthanthetyp- LombMemorialDrive,Rochester,NY14623 ical ratio, 1 •10 3 (Merritt&Ferrarese 2001), observed − ∼ × 2 Bercziketal. between SBH mass and galaxy mass; such a large mass for the SBH particles was chosen in order to minimize the rate of relaxation-driven loss cone refilling, which occurs more rapidly for smaller M (Berczik,Merritt&Spurzem 2005), and to come as close•as possible to the “empty loss cone” regimethatcharacterizesreal(axisymmetric)galaxies. Inor- dertoestimatethedependenceofthebinarydecayrateonM , wecarriedoutalimitedsetofadditionalsimulationswithdi•f- ferentvaluesofM ,asdescribedbelow. Integrations of•the particle equations of motion were carried outusing a high-accuracy,direct-summationN-body code (Berczik,Merritt&Spurzem 2005) on two paral- lel supercomputers incorporating special-pupose GRAPE (Fukushige,Makino&Kawai 2005) accelerator boards: gravitySimulator5 and GRACE.6 Integration parameters weresimilartothoseadoptedinBerczik,Merritt&Spurzem (2005)andwereferthereadertothatpaperfordetailsabout the performance of the code. Integrations were carried out for various N in the range 0.025 N 0.4 106 and for various values of the galaxy rotat≤ion p≤arame×ter w in the 0 range0 w 1.8. In addition, each modelwas integrated 0 ≤ ≤ with two choices for the orientation of the binary’s angular momentum,eitherparalleltothatofthegalaxy(“prograde”) orcountertoit(“retrograde”). 3. RESULTS After the two SBH particles come close enough together to form a bound pair, the parameters of their relative Ke- FIG. 1.— Evolution ofthe binary inverse semi-major axis, 1/a, inN- plerian orbit can be computed. Figure 1a shows the evo- bodysimulations withvarious N. (a)Spherical, nonrotating galaxy model lution of 1/a, the binary inverse semi-major axis, in a set (w 0=0). (b)Flattened, rotatinggalaxymodel(w 0=1.8). Att 10,this of simulations with w = 0 and various N. These spheri- modelformsatriaxialbar(cf.Figure2). ≈ 0 cal, non-rotatingmodelsare verysimilar to the modelscon- sidered in Berczik,Merritt&Spurzem (2005), and the bi- naryevolutionfoundhereexhibitsthesamestrongN depen- dence that was observed in that study: the hardening rate, s(t) (d/dt)(1/a),isapproximatelyconstantwithtimeand ≡ decreasesroughlyasN 1. Thisbehaviorhasbeendescribed − quantitatively(Milosavljevic&Merritt2003) onthebasisof loss-conetheory:starsejectedbythebinaryarereplacedina timethatscalesasthetwo-bodyrelaxationtime,andthelatter increasesroughlyasN inagalaxyoffixedmassandsize. When the rotationparameterw is increasedto 0.6, the 0 ∼ initiallyaxisymmetricmodelsbecomeunstabletotheforma- tion of a bar, yielding a slowly-tumbling, triaxial spheroid. Figure 2 illustrates the instability via snapshots of the w = 0 1.8 model integration. This model is moderately flattened initially, with mean short-to-long axis ratio of 0.46, and ∼ stronglyrotating,withroughly40%ofthetotalkineticenergy intheformofstreamingmotion.Moviesbasedonthesimula- tion7revealthatthetwoSBHparticlesinitiallycometogether byfallinginwardalongthebarbeforeformingaboundpair. The long-term behavior of the binary (Figure 1b) is strik- ingly different in this rotating model than in the spherical FIG.2.— Snapshotsatfourtimes(t=0,5,10,30)oftheparticlepositions, model: not only is the hardeningrate high, but more signif- projectedontothe(x,y)plane,inanN-bodyintegrationwithw 0=1.8and N=200k. TheSBHparticles areindicatedingreen. Theevolutionofthe icantly, it shows no systematic dependenceon particle num- binarysemi-majoraxisinthisintegrationisshowninFigure1b. ber. Infact,thetwosimulationsofthew =1.8modelwith 0 largestN (200k and 400k)exhibitalmostidenticalevolution ofthebinary. tegrationswere carriedoutforvarious(w ,N) andforM = Todeterminethedependenceofthebinary’sevolutionrate 0 0.04. Axisratiosofthegalaxywerecomputedusingitsm•o- on the propertiesof the galaxy model, a suite of N-body in- ment of inertia tensor, as described in Dubinski&Carlberg 5http://www.cs.rit.edu/grapecluster/clusterInfo/grapeClusterInfo.shtml (1991). The results are summarized in Figure 3. After a 6http://www.ari.uni-heidelberg.de/grace strongbar formsatt 10 in the unstablemodels, itevolves ≈ 7http://www.cs.rit.edu/grapecluster/BinaryEvolution gradually toward rounder shapes, but the system maintains EfficientMergerofBinaryBlackHoles 3 FIG. 3.—(a)Evolutionoftheintermediate-to-long axisratiob/aofthegalaxyinN-bodyintegrations withN=200kandvarious values oftherotation parameterw 0;M1=M2=0.02. Forw 0>0.6,thegalaxyisunstabletonon-axisymmetricdeformationsandformsaslowly-tumblingtriaxialspheroid. The lengthcoftheshortaxisisnearlyconstantwithtimeandisdeterminedbytheinitialflatteningofthemodel,i.e.byw 0.Thethinblacklineshowstheresultofan integrationthatomittedthetwoSBHparticles. (b)Hardeningrateofthebinarymeasuredatt=150. Thevalueofw 0isindicatedviathekeyonthelowerleft; blacksymbolsare“prograde”integrations,i.e. thebinaryrevolvesinthesamesenseasthegalaxy,andredsymbolsare“retrograde”integrations. Thedashed linesshowstheN 1dependencethatischaracteristicofacollisionally-resuppliedlosscone. − a significant triaxiality until the end of the simulation. This evolutionwouldbe substantiallymorerapidthanimpliedby slow evolution appears similar to that in the simulations Figure3binthecaseM 10 3M . − gal of Theis&Spurzem(1999), where two-bodyrelaxationwas •≈ identifiedasthedrivingmechanism. Thepresenceofamas- 4. DYNAMICALINTERPRETATION sive binary in our simulations might also tend to destroy the triaxiality (Athanassoula,Lambert&Dehnen 2005), al- A hardeningrate that is independentof N implies a colli- thoughan integrationexcludingthe binary showeda similar sionless, i.e. relaxation-independent, mode of loss-cone re- degreeofevolution;seeFigure3a. filling. Just such a mode is expected in triaxial galaxies: Thesteep, N 1 dependenceofthebinaryhardeningrate the lack of an axis of symmetry implies that stellar orbits − inthespherica∼lmodelchangestoanessentiallyconstanthard- neednotconserveanycomponentoftheangularmomentum, ening rate for w 1.2 (Figure 3b). Even the w = 0.6 hencetheycanpassarbitrarilyclosetothecenterafterafinite 0 0 model– which, Fig≥ure3a suggests, is close to marginalsta- timeandinteractwithacentralobject(Norman&Silk1983; bility–yieldedahardeningratethatwassubstantiallylarger Gerhard&Binney1985). than in the spherical models, consistent with suggestions A fullderivationof the expectedrate of supply of stars to (Merritt&Poon 2004) that even slight departures from ax- thebinaryinthesemodelswouldbeverydifficult,butwecan isymmetry could significantly influence the binary’s evolu- do an approximate calculation. The rate per unit of orbital tion.Thehardeningratewasfoundnottodependontheinitial energyatwhichcentrophilicorbitssupplymass(i.e. stars)to sense(progradevs.retrograde)ofthebinaryorbit(Figure3b). aregionofradiusrt atthecenterofagalaxyis Since M /M =0.04 is considerably larger than the ra- tio 1 1•0 3goablservedinrealgalaxies(Merritt&Ferrarese M˙(E)dE=rtA(E)Mc(E)dE (2) − ∼ × 2001; Marconi&Hunt 2003), we carried out an additional whereA(E)distherateatwhichasinglestaronacentrophilic setofsimulationsinordertoevaluatetheM -dependenceof (e.g.boxorchaotic)orbitofenergyEexperiencesnear-center thebinaryhardeningrate. Theseintegrations•usedw =1.8, 0 passages with pericenter distances d, and M (E)dE the N =0.1 106, and 0.01 M 0.08. We found that the ≤ c mass in stars on centrophilic orbits with energies from E to hardening×rate increased w≤ith•d≤ecreasing M . At t = 100, E+dE (Merritt&Poon2004). Settingr =Ka,withK 1, the hardening rates were s=(20.0,13.0,8.2•,3.4) for M = t ≈ givesthemass fluxinto thebinary’ssphereofinfluence; the (0.01,0.02,0.04,0.08). These results should be interpre•ted impliedhardeningrateis(Berczik,Merritt&Spurzem2005) with caution since we did not vary N and therefore can not state with certainty whether the s values are N-independent. d 1 2 C Thelinearsizeofthebinary’slossconeisproportionaltoM s h i M˙(E)dE. (3) makingiteasierfortwo-bodyscatteringtoaffecttheharden•- ≡ dt(cid:18)a(cid:19)≈ aM Z ing rate as M is decreased. But the M =0.04 integrations • areclearlyno•tinthecollisionally-repopu•latedregime(Figure Here, C 1.25 is the average value of the dimensionless 1b)andsothedifferencesthatweobservebetweenthehard- energyhciha≈nge during a single star-binary encounter, C ening rates for M =0.04 and 0.08 are likely to be robust. [M /2m ](D E/E). ≡ ⋆ Basedontheseres•ults,itisreasonabletoconcludethatbinary O•urN-bodymodelshavedensityr r 2 beyondthecore − ∼ 4 Bercziketal. radiusr 0.25.Inar(cid:181) r 2galaxy, is a conservativeinterpretationsince (1) forreasonablescal- c − ≈ ings of our galaxy model to real galaxies (e.g. total mass A(E)≈rs 2e−(E−Eh)/s 2, Mc(E)= fc(E)×2√96rGhe(E−Eh)/2s 2 =25010in11MN-⊙b,odhyaluf-nmitasscsorraredsiupson=ds1t0o3p<c)1, aGnyre;la(p2s)etdhetibmineaoryf h (4) is continuing to harden at the final ti∼me-step in our simula- withr =GM /s 2,E =F (r ),and f (E)thefractionofthe tions(Figure1b);(3)ourexperimentswithdifferentM found h h h c orbitsatenergy• Ethatarecentrophilic(Merritt&Poon2004). s M 1,implyingsubstantiallymorerapidhardening• inthe − Theimpliedbinaryhardeningrateis ca∼seM• /M 10 3;(4)thebinaryhadnonzeroeccentricity gal − inours•imulati≈ons.Inaddition,gasisasignificantcomponent 4√6 C Kf s s≈ 9 h sir2 cZ e−(E−Eh)/2s 2dE≈2.5fcr2. (5) oofftdhieskbignaalrayxwieosualnddb,einacmcealenryatmederbgyergsa,st-hdeynfianmalichaalrtdoerqnuinegs h h (Escalaetal.2005;Dottietal.2005). Here fc isanenergy-weighted,meanfractionofcentrophilic Oursimulationsofbinaryevolutionaresubstantiallymore orbits,andthelowerintegrationlimitwassettoEh;thelatter realistic than existing ones based on spherical or nearly- canonlybeapproximatesincethetruedensityofourgalaxy spherical galaxy models. Even more realistic simulations, modelsdepartsfromr−2atr<rc rh. Substitutings 0.47 which follow both the early and late stages of a merger ≈ ≈ and rh 0.18 from the galaxy models gives s 40fc. By between two galaxies, are probably beyond the capabili- ≈ ≈ comparison,thehardeningratesintheN-bodymodelsreach ties of current algorithms and hardware due to the need to a peak value at t 20 of s 16, consistent with the de- accurately treat both large ( 10 kpc) and small ( 0.01 ≈ ≈ ∼ ∼ rived expression if f 1/2. The gradual drop observed in pc) spatial scales. However, our galaxy models (slowly- c ≈ the hardening rate at later times, s(t) 16. 5.2ln(t/20), tumbling triaxial spheroids) are similar to those produced ≈ − 20 t 250, suggests that the numberof centrophilicstars in full merger simulations (Bournaud,Jog&Combes 2005; ≤ ≤ isbecomingsmaller,duetodepletionbythebinaryandtothe Naab,Khochfar&Burkert2006), suggestingthatourresults gradualchangeinthegalaxy’sshape. for the long-termevolution of the binary are probablyfairly Takenatfacevalue,equation(5)impliess(cid:181) M 2;however genericinspiteoftheratherartificialinitialconditions. − forsmallM ,r r andtheassumptionthatr •r 2, r>r Uncertaintiesabouttheresolutionofthe“finalparsecprob- h c − h breaksdow•n. In≪any case, the observed depend∼enceof s on lem” have been a major impediment to predicting the fre- M isslightlyweaker,s M 1 (§3). quencyofSBHmergersingalacticnuclei,andhencetocom- − • ∼ • puting event rates for proposed gravitational wave interfer- 5. IMPLICATIONS ometerslike LISA.8 Ifbinarycoalescenceratesare assumed Thetimescaleforgravitationalwaveemissionbyabinary tobesimilartogalaxymergerrates,gravitationalwaveevents blackholeis(Peters1964) integratedover the observable universe could be as frequent as102 yr 1 (Haehnelt1994;Sesanaetal.2004). Ourresults, − 5 Gµ3c5 a 4 combinedwiththeindirectevidencethatbinarySBHcoales- t = . (6) gr 164F(e) s 8M2 (cid:18)a (cid:19) cenceisefficient,suggestthatsuchhigheventratesshouldbe h • takenseriously. Here M =M +M , µ=M M /M2 is the reducedmass of 1 2 1 2 the bina•ry, s is the 1D central velo•city dispersion of stars in the nucleus, and ah Gµ/4s 2 is the semi-major axis of WethankM.MilosavljevicandS.Harfstforcommentson ≡ the binary when it first becomes “hard,” i.e. tightly bound; the manuscript. This work was supported by grants AST- the factor F(e) depends on the binary’s orbital eccentricity 0206031, AST-0420920 and AST-0437519 from the NSF, andF(0)=1. Inorderthatgravitational-wave-drivencoales- grantNNG04GJ48Gfrom NASA, grantHST-AR-09519.01- cencetakeplaceinlessthan1010 yr,anequal-mass,circular- A from STScI, grant I/80 041 GRACE from the Volkswa- orbit binary with M = 108M must first reach a separa- genFoundation,bySFB439ofDeutscheForschungsgemein- tion a<0.05ah (Mer•ritt&Mil⊙osavljevic 2005). This is just schaft,andbyINTASgrantIA-03-59-11. WethanktheCen- achieve∼d in our simulations: a 1.1 10 2, and the final ter for the Advancementof the Study of Cyberinfrastructure h − value of a in the bar-unstable m≈odels×is 6 10 4. This atRITfortheirsupport. − ∼ × 8http://lisa.jpl.nasa.gov/ REFERENCES Athanassoula,E.,Lambert,J.C.,&Dehnen,W.1005,MNRAS,363,496 Iwasawa,M.,Funato,Y.,&Makino,J.2005,ArXivAstrophysicse-prints, Begelman,M.Blandford,R.D.&Rees,M.J.1980,Nature,287,307 arXiv:astro-ph/0511391 Berczik,P.,Merritt,D.,&Spurzem,R.,ApJ,633,680 King,I.R.1966,AJ,71,64 Bournaud,F.,Jog,C.J.,&Combes,F.2005,AAp,437,69 Kormendy,J.,&Richstone,D.1995,ARAA,33,581 Dotti, M., Colpi, M., & Haardt, F. 2005, ArXiv Astrophysics e-prints, Lagoute,C.,&Longaretti,P.-Y.1996,AAp,308,441 arXiv:astro-ph/0509813 Makino,J.,&Funato,Y.2004,ApJ,602,93 Dubinski,J.,&Carlberg,R.G.1991,ApJ,378,496 Marconi,A.&Hunt,L.K.2003,AJ,589,L21 Escala,A.,Larson,R.B.,Coppi,P.S.,&Mardones,D.2005,ApJ,630,152 Merritt,D.,&Ferrarese,L.2001,MNRAS,320,L30 Ferrarese,L.&Merritt,D.,ApJ,539,L9 Merritt,D.&Milosavljevic,M.2005,Massiveblackholebinaryevolution, Fukushige,T.,Makino,J.,&Kawai,A.2005,PASJ,57,1009 LivingReviewsinRelativity,http://relativity.livingreviews.org Gebhardt,K.,etal.2000,ApJ,539,L13 Merritt,D.,&Poon,M.Y.2004,ApJ,606,788 Gerhard,O.E.,&Binney,J.1985,MNRAS,216,467 Mikkola,S.,&Valtonen,M.J.1990,ApJ,348,412 Graham,A.W.,Erwin,P.,Caon,N.,&Trujillo,I.2001,ApJ,563,L11 Milosavljevic´,M.,&Merritt,D.2003,ApJ,596,860 Haehnelt,M.G.1994,MNRAS,269,199 Naab,T.,Khochfar,S.,&Burkert,A.2006,ApJ,636,L81 Norman,C.,&Silk,J.1983,ApJ,266,502 EfficientMergerofBinaryBlackHoles 5 Peters,P.C.1964,Phys.Rev.,136,1224 Volonteri,M.,Haardt,F.,&Madau,P.,ApJ,582,559 Sesana,A.,Haardt,F.,Madau,P.,&Volonteri,M.2004,ApJ,611,623 Yu,Q.2002,Mon.Not.R.Astron.Soc.,331,935 Szell,A.,Merritt,D.&Mikkola,S.2004,AnnNYAcadSci,1045,225 Theis,C.,&Spurzem,R.1999,A&A,341,361 Tremaine,S.,etal.2002,ApJ,574,740

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.