ebook img

Thermodynamic formalism: the mathematical structures of equilibrium statistical mechanics PDF

195 Pages·2004·0.792 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Thermodynamic formalism: the mathematical structures of equilibrium statistical mechanics

ThermodynamicFormalism TheMathematicalStructuresofEquilibriumStatisticalMechanics SecondEdition ReissuedintheCambridgeMathematicalLibrarythisclassicbookoutlinesthetheory ofthermodynamicformalismwhichwasdevelopedtodescribethepropertiesof certainphysicalsystemsconsistingofalargenumberofsubunits.Itisaimedat mathematiciansinterestedinergodictheory,topologicaldynamics,constructive quantumfieldtheory,andthestudyofcertaindifferentiabledynamicalsystems, notablyAnosovdiffeomorphismsandflows.Itisalsoofinteresttotheoretical physicistsconcernedwiththecomputationalbasisofequilibriumstatisticalmechanics. Thelevelofthepresentationisgenerallyadvanced,theobjectivebeingtoprovidean efficientresearchtoolandatextforuseingraduateteaching.Backgroundmaterialon physicshasbeencollectedinappendicestohelpthereader.Extramaterialisgivenin theformofupdatesofproblemsthatwereopenattheoriginaltimeofwritingandasa newprefacespeciallywrittenforthiseditionbytheauthor. David RuelleisaProfessorEmeritusattheInstitutdesHautesEtudes Scientifiques,Bures-sur-Yvette,Paris. OtherbooksavailableintheCambridgeMathematicalLibrary G.E.Andrews TheTheoryofPartitions H.F.Baker AbelianFunctions A.Baker TranscendentalNumberTheory G.K.Batchelor AnIntroductiontoFluidDynamics N.Biggs AlgebraicGraphTheory,2ndEdition J.C.Burkill,H.Burkill ASecondCourseinMathematical Analysis S.Chapman,T.G.Cowling TheMathematicalTheoryofNon-uniform Gases R.Dedekind TheoryofAlgebraicIntegers P.G.Drazin,W.H.Reid HydrodynamicStability,2ndEdition G.H.Hardy ACourseofPureMathematics G.H.Hardy,J.E.Littlewood,G.Po´lya Inequalities,2ndEdition D.Hilbert TheoryofAlgebraicInvariants W.V.D.Hodge,D.Pedoe MethodsofAlgebraicGeometry,Volumes I,II&III R.W.H.Hudson Kummer’sQuarticSurface A.E.Ingham TheDistributionofPrimeNumbers H.Jeffreys,BerthaJeffreys MethodsofMathematicalPhysics,3rd Edition Y.Katznelson AnIntroductiontoHarmonicAnalysis, 3rdEdition H.Lamb Hydrodynamics,6thEdition J.Lighthill WavesinFluids M.Lothaire CombinatoricsonWords,2ndEdition F.S.Macaulay TheAlgebraicTheoryofModularSystems C.A.Rogers HausdorffMeasures,2ndEdition L.C.G.Rogers,D.Williams Diffusions,MarkovProcessesand Martingales,2ndEdition,VolumesI&II L.Santalo IntegralGeometryandGeometric Probability W.T.Tutte GraphTheory G.N.Watson ATreatiseontheTheoryofBessel Functions,2ndEdition A.N.Whitehead,B.Russell PrincipiaMathematicato∗56,2nd Edition E.T.Whittaker ATreatiseontheAnalyticalDynamicsof ParticlesandRigidBodies E.T.Whittaker,G.N.Watson ACourseofModernAnalysis,4thEdition A.Zygmund TrigonometricSeries,3rdEdition Thermodynamic Formalism The Mathematical Structures of Equilibrium Statistical Mechanics SecondEdition DAVID RUELLE InstitutdesHautesEtudesScientifiques CAMBRIDGEUNIVERSITYPRESS Cambridge,NewYork,Melbourne,Madrid,CapeTown,Singapore,SãoPaulo Cambridge University Press TheEdinburghBuilding,CambridgeCB22RU,UK PublishedintheUnitedStatesofAmericabyCambridgeUniversityPress,NewYork www.cambridge.org Information on this title: www.cambridg e.org /9780521546492 ©FirsteditionAddison-WesleyPublishingCompany,Inc.1978 Second edition Cambridge University Press 2004 Thispublicationisincopyright.Subjecttostatutoryexceptionandtotheprovisionof relevantcollectivelicensingagreements,noreproductionofanypartmaytakeplace withoutthewrittenpermissionofCambridgeUniversityPress. Firstpublishedinprintformat 2004 ISBN-13 978-0-511-26581-5 eBook (NetLibrary) ISBN-10 0-511-26581-6 eBook (NetLibrary) ISBN-13 978-0-521-54649-2 paperback ISBN-10 0-521-54649-4 paperback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyofurls forexternalorthird-partyinternetwebsitesreferredtointhispublication,anddoesnot guaranteethatanycontentonsuchwebsitesis,orwillremain,accurateorappropriate. Wehaven’tseeneverythingyet, butwhenwedo itwon’tbeforthefirsttime orthelast,either. Youknowus. J.Vinograd Contents Forewordtothefirstedition pagexv Prefacetothefirstedition xvii Prefacetothesecondedition xix Introduction 1 0.1 Generalities 1 0.2 Descriptionofthethermodynamicformalism 3 0.3 Summaryofcontents 9 1 TheoryofGibbsstates 11 1.1 Configurationspace 11 1.2 Interactions 12 1.3 Gibbsensemblesandthermodynamiclimit 13 1.4 Proposition 14 1.5 Gibbsstates 14 1.6 ThermodynamiclimitofGibbsensembles 15 1.7 Boundaryterms 16 1.8 Theorem 18 1.9 Theorem 18 1.10 Algebraatinfinity 19 1.11 Theorem(characterizationofpureGibbsstates) 20 1.12 TheoperatorsM 20 (cid:3) 1.13 Theorem(characterizationofuniqueGibbsstates) 21 1.14 Remark 22 Notes 23 Exercises 23 vii viii Contents 2 Gibbsstates:complements 24 2.1 Morphismsoflatticesystems 24 2.2 Example 25 2.3 Theinteraction F∗(cid:4) 25 2.4 Lemma 26 2.5 Proposition 26 2.6 Remarks 27 2.7 Systemsofconditionalprobabilities 28 2.8 PropertiesofGibbsstates 29 2.9 Remark 30 Notes 30 Exercises 31 3 Translationinvariance.Theoryofequilibriumstates 33 3.1 Translationinvariance 33 3.2 Thefunction A(cid:4) 34 3.3 Partitionfunctions 35 3.4 Theorem 36 3.5 Invariantstates 39 3.6 Proposition 39 3.7 Theorem 40 3.8 Entropy 42 3.9 InfinitelimitinthesenseofvanHove 43 3.10 Theorem 43 3.11 Lemma 45 3.12 Theorem 45 3.13 Corollary 47 3.14 Corollary 48 3.15 Physicalinterpretation 48 3.16 Theorem 49 3.17 Corollary 49 3.18 Approximationofinvariantstatesbyequilibriumstates 50 3.19 Lemma 50 3.20 Theorem 52 3.21 Coexistenceofphases 53 Notes 54 Exercises 54 Contents ix 4 ConnectionbetweenGibbsstatesandEquilibriumstates 57 4.1 Generalities 57 4.2 Theorem 58 4.3 Physicalinterpretation 59 4.4 Proposition 59 4.5 Remark 60 4.6 Strictconvexityofthepressure 61 4.7 Proposition 61 ν ν 4.8 Z -latticesystemsandZ -morphisms 62 4.9 Proposition 62 4.10 Corollary 63 4.11 Remark 63 4.12 Proposition 64 ν 4.13 Restrictionof Z toasubgroupG 64 4.14 Proposition 65 4.15 Undecidabilityandnon-periodicity 65 Notes 66 Exercises 66 5 One-dimensionalsystems 69 5.1 Lemma 70 5.2 Theorem 70 5.3 Theorem 71 5.4 Lemma 72 5.5 Proofoftheorems5.2and5.3 73 5.6 Corollariestotheorems5.2and5.3 75 5.7 Theorem 76 5.8 MixingZ-latticesystems 78 5.9 Lemma 78 5.10 Theorem 79 5.11 ThetransfermatrixandtheoperatorL 80 5.12 Thefunctionψ> 81 5.13 Proposition 81 5.14 TheoperatorS 82 5.15 Lemma 82 5.16 Proposition 82 5.17 Remark 83 5.18 Exponentiallydecreasinginteractions 83

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.