Table Of ContentTHERMODYNAMIC
DEGRADATION SCIENCE
Wiley Series in Quality & Reliability Engineering
DrAndreKleyner
SeriesEditor
TheWileyseriesinQuality&ReliabilityEngineeringaimstoprovideasolideducationalfoundationforboth
practitionersandresearchersinQ&Rfieldandtoexpandthereader’sknowledgebasetoincludethelatest
developmentsinthisfield.Theserieswillprovidealastingandpositivecontributiontotheteachingandpractice
ofengineering.
Theseriescoveragewillcontain,butisnotexclusiveto,
(cid:129) statisticalmethods;
(cid:129) physicsoffailure;
(cid:129) reliabilitymodeling;
(cid:129) functionalsafety;
(cid:129) six-sigmamethods;
(cid:129) lead-freeelectronics;
(cid:129) warrantyanalysis/management;and
(cid:129) riskandsafetyanalysis.
Wiley Series in Quality & Reliability Engineering
NextGenerationHALTandHASS:RobustDesignofElectronicsandSystems
byKirkA.Gray,JohnJ.Paschkewitz
May2016
ReliabilityandRiskModels:SettingReliabilityRequirements,2ndEdition
byMichaelTodinov
September2015
AppliedReliabilityEngineeringandRiskAnalysis:ProbabilisticModelsandStatisticalInference
byIliaB.Frenkel,AlexKaragrigoriou,AnatolyLisnianski,AndreV.Kleyner
September2013
DesignforReliability
byDevG.Raheja(Editor),LouisJ.Gullo(Editor)
July2012
EffectiveFMEAs:AchievingSafe,Reliable,andEconomicalProductsandProcessesusing
FailureModeandEffectsAnalysis
byCarlCarlson
April2012
FailureAnalysis:APracticalGuideforManufacturersofElectronicComponentsandSystems
byMariusBazu,TituBajenescu
April2011
ReliabilityTechnology:PrinciplesandPracticeofFailurePreventioninElectronicSystems
byNormanPascoe
April2011
ImprovingProductReliability:StrategiesandImplementation
byMarkA.Levin,TedT.Kalal
March2003
TestEngineering:AConciseGuidetoCost-effectiveDesign,DevelopmentandManufacture
byPatrickO’Connor
April2001
IntegratedCircuitFailureAnalysis:AGuidetoPreparationTechniques
byFriedrichBeck
January1998
MeasurementandCalibrationRequirementsforQualityAssurancetoISO9000
byAlanS.Morris
October1997
ElectronicComponentReliability:Fundamentals,Modelling,Evaluation,andAssurance
byFinnJensen
November1995
THERMODYNAMIC
DEGRADATION SCIENCE
PHYSICS OF FAILURE,
ACCELERATED TESTING,
FATIGUE, AND RELIABILITY
APPLICATIONS
Alec Feinberg, Ph.D.
DfRSoftware Company, Raleigh, NC, USA
Thiseditionfirstpublished2016
©2016byJohnWiley&Sons,Ltd
RegisteredOffice
JohnWiley&Sons,Ltd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UnitedKingdom
Fordetailsofourglobaleditorialoffices,forcustomerservicesandforinformationabouthowtoapplyforpermissionto
reusethecopyrightmaterialinthisbookpleaseseeourwebsiteatwww.wiley.com.
Therightoftheauthortobeidentifiedastheauthorofthisworkhasbeenassertedinaccordancewiththe
Copyright,DesignsandPatentsAct1988.
Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmitted,in
anyformorbyanymeans,electronic,mechanical,photocopying,recordingorotherwise,exceptaspermittedbytheUK
Copyright,DesignsandPatentsAct1988,withoutthepriorpermissionofthepublisher.
Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprintmaynotbe
availableinelectronicbooks.
Designationsusedbycompaniestodistinguishtheirproductsareoftenclaimedastrademarks.Allbrandnames
andproductnamesusedinthisbookaretradenames,servicemarks,trademarksorregisteredtrademarksoftheir
respectiveowners.Thepublisherisnotassociatedwithanyproductorvendormentionedinthisbook.
LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthorhaveusedtheirbesteffortsinpreparing
thisbook,theymakenorepresentationsorwarrantieswithrespecttotheaccuracyorcompletenessofthecontentsof
thisbookandspecificallydisclaimanyimpliedwarrantiesofmerchantabilityorfitnessforaparticularpurpose.Itissold
ontheunderstandingthatthepublisherisnotengagedinrenderingprofessionalservicesandneitherthepublisher
northeauthorshallbeliablefordamagesarisingherefrom.Ifprofessionaladviceorotherexpertassistanceisrequired,
theservicesofacompetentprofessionalshouldbesought.
LibraryofCongressCataloging-in-PublicationData
Names:Feinberg,Alec,author
Title:Thermodynamicdegradationscience:physicsoffailure,acceleratedtesting,fatigue
andreliabilityapplications/AlecFeinberg,Ph.D.
Description:Hoboken,NJ:JohnWiley&Sons,Inc.,[2016]|Series:Wileyseriesinquality
andreliabilityengineering|Includesbibliographicalreferencesandindex.
Identifiers:LCCN2016017320(print)|LCCN2016031239(ebook)|ISBN9781119276227(cloth)|
ISBN9781119276241(pdf)|ISBN9781119276272(epub)
Subjects:LCSH:Heat-engines–Thermodynamics.|Metals–Fatigue.|Metals–Testing.|
Thermodynamicequilibrium.
Classification:LCCTJ265.F452016(print)|LCCTJ265(ebook)|DDC620.1/61–dc23
LCrecordavailableathttps://lccn.loc.gov/2016017320
AcataloguerecordforthisbookisavailablefromtheBritishLibrary.
Coverimage:Gettyimages/AlexSava
Setin10/12ptTimesbySPiGlobal,Pondicherry,India
1 2016
To Linda
Failure is Not an Option
Inmanysituations,failureisnotanoption.Itcantakeimmenseplanningtopreventfailure.
Thermodynamicdegradationscienceoffersnewtoolsandmeasurementmethodsthatcanhelp.
Second Law of Thermodynamics in Terms of Aging
Thespontaneousirreversibledegradationprocessesthattakeplaceinasysteminteractingwithits
environmentwilldosoinordertogotowardsthermodynamicequilibriumwithitsenvironment.
Entropy Damage
Theentropygeneratedassociatedwithsystemdegradationis“entropydamage.”
ΔS =ΔS +ΔS , ΔS ≥0
system damage non-damage damage
W =W −W
actual rev þirr
X
Y dX
n n
Cumdamage= n
W
failure
The Four Main Aging Categories
(cid:129) Forced processes;
(cid:129) Activation;
(cid:129) Diffusion; and
(cid:129) Combinations of these, yielding complex aging.
Contents
List of Figures xiii
List of Tables xvi
About the Author xvii
Preface xviii
1 Equilibrium Thermodynamic Degradation Science 1
1.1 Introduction to a New Science 1
1.2 CategorizingPhysics of Failure Mechanisms 2
1.3 Entropy Damage Concept 3
1.3.1 The System (Device) and its Environment 4
1.3.2 Irreversible Thermodynamic Processes Cause Damage 5
1.4 Thermodynamic Work 6
1.5 Thermodynamic State Variables andtheir Characteristics 7
1.6 Thermodynamic Second Law in Terms of System Entropy Damage 9
1.6.1 Thermodynamic Entropy DamageAxiom 11
1.6.2 Entropyand Free Energy 13
1.7 Work, Resistance, Generated Entropy, andthe Second Law 14
1.8 Thermodynamic Catastrophic and Parametric Failure 16
1.8.1 Equilibrium and Non-Equilibrium Aging States in Terms of the
Free Energy or Entropy Change 16
1.9 Repair Entropy 17
1.9.1 Example 1.1:Repair Entropy: Relating Non-Damage Entropy
Flow to Entropy Damage 17
Summary 18
References 22
viii Contents
2 Applications of Equilibrium Thermodynamic Degradation to Complex and
Simple Systems: Entropy Damage, Vibration, Temperature, Noise Analysis,
and Thermodynamic Potentials 23
2.1 Cumulative EntropyDamage Approach in Physics of Failure 23
2.1.1 Example 2.1:Miner’s Rule Derivation 25
2.1.2 Example 2.2:Miner’s Rule Example 26
2.1.3 Non-Cyclic Applications of Cumulative Damage 27
2.2 Measuring EntropyDamage Processes 27
2.3 Intermediate Thermodynamic Aging States andSampling 29
2.4 Measures for System-Level Entropy Damage 29
2.4.1 Measuring System Entropy Damage with Temperature 29
2.4.2 Example 2.3:Resistor Aging 30
2.4.3 Example 2.4:Complex Resistor Bank 31
2.4.4 System Entropy Damage with Temperature Observations 32
2.4.5 Example 2.5:Temperature Aging of an Operating System 32
2.4.6 Comment onHigh-Temperature Aging for Operating and
Non-Operating Systems 32
2.5 Measuring Randomness dueto System EntropyDamage with Mesoscopic
Noise Analysis in an Operating System 33
2.5.1 Example 2.6:Gaussian Noise Vibration Damage 35
2.5.2 Example 2.7:System Vibration Damage Observed with
Noise Analysis 36
2.6 How System Entropy Damage Leads to Random Processes 37
2.6.1 Stationary versus Non-Stationary Entropy Process 40
2.7 Example 2.8: Human Heart Rate Noise Degradation 41
2.8 Entropy Damage Noise Assessment Using Autocorrelation andthe
Power Spectral Density 42
2.8.1 Noise Measurements Rules of Thumb for the PSDand R 43
2.8.2 Literature Reviewof TraditionalNoise Measurement 44
2.8.3 Literature Reviewfor Resistor Noise 48
2.9 Noise Detection Measurement System 48
2.9.1 System Noise Temperature 49
2.9.2 Environmental Noise Due to Pollution 50
2.9.3 Measuring System Entropy Damage using Failure Rate 50
2.10 Entropy Maximize Principle: CombinedFirst and Second Law 51
2.10.1 Example 2.9:ThermalEquilibrium 52
2.10.2 Example 2.10: Equilibrium with Charge Exchange 53
2.10.3 Example 2.11: Diffusion Equilibrium 55
2.10.4 Example 2.12: Available Work 55
2.11 Thermodynamic Potentials and Energy States 57
2.11.1 The Helmholtz Free Energy 58
2.11.2 The Enthalpy Energy State 60
2.11.3 The Gibbs Free Energy 60
2.11.4 Summaryof Common Thermodynamic State Energies 62
2.11.5 Example 2.13: Work, Entropy Damage,and Free Energy Change 62
2.11.6 Example 2.14: System in Contact with aReservoir 65
Contents ix
Summary 68
References 76
3 NE Thermodynamic Degradation Science AssessmentUsingthe
Work Concept 77
3.1 Equilibrium versus Non-Equilibrium AgingApproach 77
3.1.1 Conjugate Work and Free Energy Approach to Understanding
Non-Equilibrium Thermodynamic Degradation 78
3.2 Application to Cyclic Work andCumulative Damage 79
3.3 Cyclic Work Process, Heat Engines, and the Carnot Cycle 81
3.4 Example 3.1: Cyclic Engine DamageQuantified Using Efficiency 84
3.5 The Thermodynamic Damage Ratio Method for Tracking Degradation 86
3.6 Acceleration Factors from the Damage Ratio Principle 87
Summary 89
References 92
4 Applications of NE Thermodynamic DegradationScience to Mechanical
Systems: AcceleratedTest and CAST Equations, Miner’s Rule, and FDS 93
4.1 Thermodynamic Work Approach to Physics of Failure Problems 93
4.2 Example 4.1: Miner’s Rule 93
4.2.1 Acceleration Factor Modification of Miner’s DamageRule 95
4.3 Assessing Thermodynamic Damage in Mechanical Systems 96
4.3.1 Example 4.2:CreepCumulative Damageand Acceleration Factors 96
4.3.2 Example 4.3:Wear Cumulative Damage and Acceleration Factors 99
4.3.3 Example 4.4:ThermalCycle Fatigue and Acceleration Factors 101
4.3.4 Example 4.5:Mechanical Cycle Vibration Fatigue and Acceleration
Factors 102
4.3.5 Example 4.6:Cycles to Failure under aResonance Condition:
Q Effect 105
4.4 Cumulative DamageAccelerated Stress Test Goal: Environmental Profiling
and Cumulative Accelerated Stress Test (CAST) Equations 107
4.5 Fatigue Damage Spectrum Analysis for Vibration Accelerated Testing 108
4.5.1 Fatigue Damage Spectrum for Sine Vibration Accelerated Testing 109
4.5.2 Fatigue Damage Spectrum for Random Vibration Accelerated Testing 110
Summary 111
References 117
5 Corrosion Applications in NE Thermodynamic Degradation 118
5.1 Corrosion Damage in Electrochemistry 118
5.1.1 Example 5.1:Miner’s Rule for Secondary Batteries 119
5.2 Example 5.2: Chemical CorrosionProcesses 121
5.2.1 Example 5.3:Numerical Example of Linear Corrosion 123
5.2.2 Example 5.4:Corrosion Rate Comparison of Different Metals 124
5.2.3 ThermalArrhenius Activation and Peukert’sLaw 124
5.3 Corrosion Current in Primary Batteries 126
5.3.1 Equilibrium Thermodynamic Condition: Nernst Equation 127
x Contents
5.4 Corrosion Rate in Microelectronics 128
5.4.1 Corrosion and Chemical Rate Processes Due to Temperature 129
Summary 130
References 133
6 Thermal Activation Free Energy Approach 134
6.1 Free Energy Roller Coaster 134
6.2 Thermally ActivatedTime-Dependent (TAT) Degradation Model 135
6.2.1 Arrhenius Aging Due to Small Parametric Change 136
6.3 Free Energy Use in Parametric Degradation and the Partition Function 138
6.4 Parametric Aging at End of Life Due to the Arrhenius Mechanism:
Large Parametric Change 140
Summary 141
References 143
7 TAT Model Applications: Wear, Creep, and Transistor Aging 144
7.1 Solving Physics of Failure Problems with the TAT Model 144
7.2 Example 7.1: Activation Wear 144
7.3 Example 7.2: Activation Creep Model 146
7.4 Transistor Aging 148
7.4.1 Bipolar Transistor Beta Aging Mechanism 148
7.4.2 Capacitor Leakage Model for Base Leakage Current 149
7.4.3 Thermally Activated Time-Dependent Model for Transistors and
Dielectric Leakage 150
7.4.4 Field-Effect Transistor Parameter Degradation 152
Summary 154
References 156
8 Diffusion 157
8.1 The Diffusion Process 157
8.2 Example 8.1: Describing Diffusion Using Equilibrium Thermodynamics 157
8.3 Describing Diffusion Using Probability 159
8.4 Diffusion AccelerationFactor with and without Temperature Dependence 161
8.5 Diffusion EntropyDamage 161
8.5.1 Example 8.2:Package Moisture Diffusion 162
8.6 General Form of the Diffusion Equation 163
Summary 164
Reference 166
9 How Aging LawsInfluence Parametric and Catastrophic Reliability
Distributions 167
9.1 Physics of Failure Influence on Reliability Distributions 167
9.2 Log Time Aging (or Power AgingLaws) and the Lognormal Distribution 168
9.3 Aging Power Laws and the Weibull Distribution: Influence onBeta 171
Description:Thermodynamic degradation science is a new and exciting discipline. This book merges the science of physics of failure with thermodynamics and shows how degradation modeling is improved and enhanced when using thermodynamic principles. The author also goes beyond the traditional physics of failure m