ebook img

Thermodynamic degradation science : physics of failure, accelerated testing, fatigue and reliability applications PDF

261 Pages·2016·5.1 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Thermodynamic degradation science : physics of failure, accelerated testing, fatigue and reliability applications

THERMODYNAMIC DEGRADATION SCIENCE Wiley Series in Quality & Reliability Engineering DrAndreKleyner SeriesEditor TheWileyseriesinQuality&ReliabilityEngineeringaimstoprovideasolideducationalfoundationforboth practitionersandresearchersinQ&Rfieldandtoexpandthereader’sknowledgebasetoincludethelatest developmentsinthisfield.Theserieswillprovidealastingandpositivecontributiontotheteachingandpractice ofengineering. Theseriescoveragewillcontain,butisnotexclusiveto, (cid:129) statisticalmethods; (cid:129) physicsoffailure; (cid:129) reliabilitymodeling; (cid:129) functionalsafety; (cid:129) six-sigmamethods; (cid:129) lead-freeelectronics; (cid:129) warrantyanalysis/management;and (cid:129) riskandsafetyanalysis. Wiley Series in Quality & Reliability Engineering NextGenerationHALTandHASS:RobustDesignofElectronicsandSystems byKirkA.Gray,JohnJ.Paschkewitz May2016 ReliabilityandRiskModels:SettingReliabilityRequirements,2ndEdition byMichaelTodinov September2015 AppliedReliabilityEngineeringandRiskAnalysis:ProbabilisticModelsandStatisticalInference byIliaB.Frenkel,AlexKaragrigoriou,AnatolyLisnianski,AndreV.Kleyner September2013 DesignforReliability byDevG.Raheja(Editor),LouisJ.Gullo(Editor) July2012 EffectiveFMEAs:AchievingSafe,Reliable,andEconomicalProductsandProcessesusing FailureModeandEffectsAnalysis byCarlCarlson April2012 FailureAnalysis:APracticalGuideforManufacturersofElectronicComponentsandSystems byMariusBazu,TituBajenescu April2011 ReliabilityTechnology:PrinciplesandPracticeofFailurePreventioninElectronicSystems byNormanPascoe April2011 ImprovingProductReliability:StrategiesandImplementation byMarkA.Levin,TedT.Kalal March2003 TestEngineering:AConciseGuidetoCost-effectiveDesign,DevelopmentandManufacture byPatrickO’Connor April2001 IntegratedCircuitFailureAnalysis:AGuidetoPreparationTechniques byFriedrichBeck January1998 MeasurementandCalibrationRequirementsforQualityAssurancetoISO9000 byAlanS.Morris October1997 ElectronicComponentReliability:Fundamentals,Modelling,Evaluation,andAssurance byFinnJensen November1995 THERMODYNAMIC DEGRADATION SCIENCE PHYSICS OF FAILURE, ACCELERATED TESTING, FATIGUE, AND RELIABILITY APPLICATIONS Alec Feinberg, Ph.D. DfRSoftware Company, Raleigh, NC, USA Thiseditionfirstpublished2016 ©2016byJohnWiley&Sons,Ltd RegisteredOffice JohnWiley&Sons,Ltd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UnitedKingdom Fordetailsofourglobaleditorialoffices,forcustomerservicesandforinformationabouthowtoapplyforpermissionto reusethecopyrightmaterialinthisbookpleaseseeourwebsiteatwww.wiley.com. Therightoftheauthortobeidentifiedastheauthorofthisworkhasbeenassertedinaccordancewiththe Copyright,DesignsandPatentsAct1988. Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmitted,in anyformorbyanymeans,electronic,mechanical,photocopying,recordingorotherwise,exceptaspermittedbytheUK Copyright,DesignsandPatentsAct1988,withoutthepriorpermissionofthepublisher. Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprintmaynotbe availableinelectronicbooks. Designationsusedbycompaniestodistinguishtheirproductsareoftenclaimedastrademarks.Allbrandnames andproductnamesusedinthisbookaretradenames,servicemarks,trademarksorregisteredtrademarksoftheir respectiveowners.Thepublisherisnotassociatedwithanyproductorvendormentionedinthisbook. LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthorhaveusedtheirbesteffortsinpreparing thisbook,theymakenorepresentationsorwarrantieswithrespecttotheaccuracyorcompletenessofthecontentsof thisbookandspecificallydisclaimanyimpliedwarrantiesofmerchantabilityorfitnessforaparticularpurpose.Itissold ontheunderstandingthatthepublisherisnotengagedinrenderingprofessionalservicesandneitherthepublisher northeauthorshallbeliablefordamagesarisingherefrom.Ifprofessionaladviceorotherexpertassistanceisrequired, theservicesofacompetentprofessionalshouldbesought. LibraryofCongressCataloging-in-PublicationData Names:Feinberg,Alec,author Title:Thermodynamicdegradationscience:physicsoffailure,acceleratedtesting,fatigue andreliabilityapplications/AlecFeinberg,Ph.D. Description:Hoboken,NJ:JohnWiley&Sons,Inc.,[2016]|Series:Wileyseriesinquality andreliabilityengineering|Includesbibliographicalreferencesandindex. Identifiers:LCCN2016017320(print)|LCCN2016031239(ebook)|ISBN9781119276227(cloth)| ISBN9781119276241(pdf)|ISBN9781119276272(epub) Subjects:LCSH:Heat-engines–Thermodynamics.|Metals–Fatigue.|Metals–Testing.| Thermodynamicequilibrium. Classification:LCCTJ265.F452016(print)|LCCTJ265(ebook)|DDC620.1/61–dc23 LCrecordavailableathttps://lccn.loc.gov/2016017320 AcataloguerecordforthisbookisavailablefromtheBritishLibrary. Coverimage:Gettyimages/AlexSava Setin10/12ptTimesbySPiGlobal,Pondicherry,India 1 2016 To Linda Failure is Not an Option Inmanysituations,failureisnotanoption.Itcantakeimmenseplanningtopreventfailure. Thermodynamicdegradationscienceoffersnewtoolsandmeasurementmethodsthatcanhelp. Second Law of Thermodynamics in Terms of Aging Thespontaneousirreversibledegradationprocessesthattakeplaceinasysteminteractingwithits environmentwilldosoinordertogotowardsthermodynamicequilibriumwithitsenvironment. Entropy Damage Theentropygeneratedassociatedwithsystemdegradationis“entropydamage.” ΔS =ΔS +ΔS , ΔS ≥0 system damage non-damage damage W =W −W actual rev þirr X Y dX n n Cumdamage= n W failure The Four Main Aging Categories (cid:129) Forced processes; (cid:129) Activation; (cid:129) Diffusion; and (cid:129) Combinations of these, yielding complex aging. Contents List of Figures xiii List of Tables xvi About the Author xvii Preface xviii 1 Equilibrium Thermodynamic Degradation Science 1 1.1 Introduction to a New Science 1 1.2 CategorizingPhysics of Failure Mechanisms 2 1.3 Entropy Damage Concept 3 1.3.1 The System (Device) and its Environment 4 1.3.2 Irreversible Thermodynamic Processes Cause Damage 5 1.4 Thermodynamic Work 6 1.5 Thermodynamic State Variables andtheir Characteristics 7 1.6 Thermodynamic Second Law in Terms of System Entropy Damage 9 1.6.1 Thermodynamic Entropy DamageAxiom 11 1.6.2 Entropyand Free Energy 13 1.7 Work, Resistance, Generated Entropy, andthe Second Law 14 1.8 Thermodynamic Catastrophic and Parametric Failure 16 1.8.1 Equilibrium and Non-Equilibrium Aging States in Terms of the Free Energy or Entropy Change 16 1.9 Repair Entropy 17 1.9.1 Example 1.1:Repair Entropy: Relating Non-Damage Entropy Flow to Entropy Damage 17 Summary 18 References 22 viii Contents 2 Applications of Equilibrium Thermodynamic Degradation to Complex and Simple Systems: Entropy Damage, Vibration, Temperature, Noise Analysis, and Thermodynamic Potentials 23 2.1 Cumulative EntropyDamage Approach in Physics of Failure 23 2.1.1 Example 2.1:Miner’s Rule Derivation 25 2.1.2 Example 2.2:Miner’s Rule Example 26 2.1.3 Non-Cyclic Applications of Cumulative Damage 27 2.2 Measuring EntropyDamage Processes 27 2.3 Intermediate Thermodynamic Aging States andSampling 29 2.4 Measures for System-Level Entropy Damage 29 2.4.1 Measuring System Entropy Damage with Temperature 29 2.4.2 Example 2.3:Resistor Aging 30 2.4.3 Example 2.4:Complex Resistor Bank 31 2.4.4 System Entropy Damage with Temperature Observations 32 2.4.5 Example 2.5:Temperature Aging of an Operating System 32 2.4.6 Comment onHigh-Temperature Aging for Operating and Non-Operating Systems 32 2.5 Measuring Randomness dueto System EntropyDamage with Mesoscopic Noise Analysis in an Operating System 33 2.5.1 Example 2.6:Gaussian Noise Vibration Damage 35 2.5.2 Example 2.7:System Vibration Damage Observed with Noise Analysis 36 2.6 How System Entropy Damage Leads to Random Processes 37 2.6.1 Stationary versus Non-Stationary Entropy Process 40 2.7 Example 2.8: Human Heart Rate Noise Degradation 41 2.8 Entropy Damage Noise Assessment Using Autocorrelation andthe Power Spectral Density 42 2.8.1 Noise Measurements Rules of Thumb for the PSDand R 43 2.8.2 Literature Reviewof TraditionalNoise Measurement 44 2.8.3 Literature Reviewfor Resistor Noise 48 2.9 Noise Detection Measurement System 48 2.9.1 System Noise Temperature 49 2.9.2 Environmental Noise Due to Pollution 50 2.9.3 Measuring System Entropy Damage using Failure Rate 50 2.10 Entropy Maximize Principle: CombinedFirst and Second Law 51 2.10.1 Example 2.9:ThermalEquilibrium 52 2.10.2 Example 2.10: Equilibrium with Charge Exchange 53 2.10.3 Example 2.11: Diffusion Equilibrium 55 2.10.4 Example 2.12: Available Work 55 2.11 Thermodynamic Potentials and Energy States 57 2.11.1 The Helmholtz Free Energy 58 2.11.2 The Enthalpy Energy State 60 2.11.3 The Gibbs Free Energy 60 2.11.4 Summaryof Common Thermodynamic State Energies 62 2.11.5 Example 2.13: Work, Entropy Damage,and Free Energy Change 62 2.11.6 Example 2.14: System in Contact with aReservoir 65 Contents ix Summary 68 References 76 3 NE Thermodynamic Degradation Science AssessmentUsingthe Work Concept 77 3.1 Equilibrium versus Non-Equilibrium AgingApproach 77 3.1.1 Conjugate Work and Free Energy Approach to Understanding Non-Equilibrium Thermodynamic Degradation 78 3.2 Application to Cyclic Work andCumulative Damage 79 3.3 Cyclic Work Process, Heat Engines, and the Carnot Cycle 81 3.4 Example 3.1: Cyclic Engine DamageQuantified Using Efficiency 84 3.5 The Thermodynamic Damage Ratio Method for Tracking Degradation 86 3.6 Acceleration Factors from the Damage Ratio Principle 87 Summary 89 References 92 4 Applications of NE Thermodynamic DegradationScience to Mechanical Systems: AcceleratedTest and CAST Equations, Miner’s Rule, and FDS 93 4.1 Thermodynamic Work Approach to Physics of Failure Problems 93 4.2 Example 4.1: Miner’s Rule 93 4.2.1 Acceleration Factor Modification of Miner’s DamageRule 95 4.3 Assessing Thermodynamic Damage in Mechanical Systems 96 4.3.1 Example 4.2:CreepCumulative Damageand Acceleration Factors 96 4.3.2 Example 4.3:Wear Cumulative Damage and Acceleration Factors 99 4.3.3 Example 4.4:ThermalCycle Fatigue and Acceleration Factors 101 4.3.4 Example 4.5:Mechanical Cycle Vibration Fatigue and Acceleration Factors 102 4.3.5 Example 4.6:Cycles to Failure under aResonance Condition: Q Effect 105 4.4 Cumulative DamageAccelerated Stress Test Goal: Environmental Profiling and Cumulative Accelerated Stress Test (CAST) Equations 107 4.5 Fatigue Damage Spectrum Analysis for Vibration Accelerated Testing 108 4.5.1 Fatigue Damage Spectrum for Sine Vibration Accelerated Testing 109 4.5.2 Fatigue Damage Spectrum for Random Vibration Accelerated Testing 110 Summary 111 References 117 5 Corrosion Applications in NE Thermodynamic Degradation 118 5.1 Corrosion Damage in Electrochemistry 118 5.1.1 Example 5.1:Miner’s Rule for Secondary Batteries 119 5.2 Example 5.2: Chemical CorrosionProcesses 121 5.2.1 Example 5.3:Numerical Example of Linear Corrosion 123 5.2.2 Example 5.4:Corrosion Rate Comparison of Different Metals 124 5.2.3 ThermalArrhenius Activation and Peukert’sLaw 124 5.3 Corrosion Current in Primary Batteries 126 5.3.1 Equilibrium Thermodynamic Condition: Nernst Equation 127 x Contents 5.4 Corrosion Rate in Microelectronics 128 5.4.1 Corrosion and Chemical Rate Processes Due to Temperature 129 Summary 130 References 133 6 Thermal Activation Free Energy Approach 134 6.1 Free Energy Roller Coaster 134 6.2 Thermally ActivatedTime-Dependent (TAT) Degradation Model 135 6.2.1 Arrhenius Aging Due to Small Parametric Change 136 6.3 Free Energy Use in Parametric Degradation and the Partition Function 138 6.4 Parametric Aging at End of Life Due to the Arrhenius Mechanism: Large Parametric Change 140 Summary 141 References 143 7 TAT Model Applications: Wear, Creep, and Transistor Aging 144 7.1 Solving Physics of Failure Problems with the TAT Model 144 7.2 Example 7.1: Activation Wear 144 7.3 Example 7.2: Activation Creep Model 146 7.4 Transistor Aging 148 7.4.1 Bipolar Transistor Beta Aging Mechanism 148 7.4.2 Capacitor Leakage Model for Base Leakage Current 149 7.4.3 Thermally Activated Time-Dependent Model for Transistors and Dielectric Leakage 150 7.4.4 Field-Effect Transistor Parameter Degradation 152 Summary 154 References 156 8 Diffusion 157 8.1 The Diffusion Process 157 8.2 Example 8.1: Describing Diffusion Using Equilibrium Thermodynamics 157 8.3 Describing Diffusion Using Probability 159 8.4 Diffusion AccelerationFactor with and without Temperature Dependence 161 8.5 Diffusion EntropyDamage 161 8.5.1 Example 8.2:Package Moisture Diffusion 162 8.6 General Form of the Diffusion Equation 163 Summary 164 Reference 166 9 How Aging LawsInfluence Parametric and Catastrophic Reliability Distributions 167 9.1 Physics of Failure Influence on Reliability Distributions 167 9.2 Log Time Aging (or Power AgingLaws) and the Lognormal Distribution 168 9.3 Aging Power Laws and the Weibull Distribution: Influence onBeta 171

Description:
Thermodynamic degradation science is a new and exciting discipline. This book merges the science of physics of failure with thermodynamics and shows how degradation modeling is improved and enhanced when using thermodynamic principles. The author also goes beyond the traditional physics of failure m
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.