Thermoacoustic Tomography Principles and applications IPEM–IOP Series in Physics and Engineering in Medicine and Biology Editorial Advisory Board Members Frank Verhaegen Kwan Hoong Ng Maastro Clinic, the Netherlands University of Malaya, Malaysia Carmel Caruana John Hossack University of Malta, Malta University of Virginia, USA Penelope Allisy-Roberts Tingting Zhu formerly of BIPM, Sèvres, France University of Oxford, UK Rory Cooper Dennis Schaart University of Pittsburgh, USA TU Delft, the Netherlands Alicia El Haj Indra J Das University of Birmingham, UK New York University, USA About the Series Series in Physics and Engineering in Medicine and Biology will allow IPEM to enhance its mission to ‘advance physics and engineering applied to medicine and biology for the public good.’ Focusing on key areas including, but not limited to: (cid:129) clinical engineering (cid:129) diagnostic radiology (cid:129) informatics and computing (cid:129) magnetic resonance imaging (cid:129) nuclear medicine (cid:129) physiological measurement (cid:129) radiation protection (cid:129) radiotherapy (cid:129) rehabilitation engineering (cid:129) ultrasound and non-ionising radiation. A number of IPEM–IOP titles are published as part of the EUTEMPE Network Series for Medical Physics Experts. Thermoacoustic Tomography Principles and applications Huabei Jiang Department of Medical Engineering, USF Center for Advanced Biomedical Imaging, University of South Florida, Tampa, FL, USA IOP Publishing, Bristol, UK A historical small town in Sichuan, China. Ink and color pencil on paper, 27.9cm × 35.5cm, drawn and paintedbyHuabeiJiang.Thispiecewasinspiredbyauniquecombinationofinkdrawingandpaintingby impressionists. YosemiteNationalParkinCalifornia,USA.WatercoloronXuanpaper(fromtreeskins),47.5cm×69.5cm, paintedbyHuabeiJiang.Infact,thispiecewasinspiredbyconventionalChinesepainting,watercolorand paintingbyimpressionists,whichistrulyanalogictoamultimodalapproachinimagingscience. ªIOPPublishingLtd2020 Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem ortransmittedinanyformorbyanymeans,electronic,mechanical,photocopying,recording orotherwise,withoutthepriorpermissionofthepublisher,orasexpresslypermittedbylawor undertermsagreedwiththeappropriaterightsorganization.Multiplecopyingispermittedin accordancewiththetermsoflicencesissuedbytheCopyrightLicensingAgency,theCopyright ClearanceCentreandotherreproductionrightsorganizations. PermissiontomakeuseofIOPPublishingcontentotherthanassetoutabovemaybesought [email protected]. HuabeiJianghasassertedhisrighttobeidentifiedastheauthorofthisworkinaccordancewith sections77and78oftheCopyright,DesignsandPatentsAct1988. ISBN 978-0-7503-3163-0(ebook) ISBN 978-0-7503-3161-6(print) ISBN 978-0-7503-3164-7(myPrint) ISBN 978-0-7503-3162-3(mobi) DOI 10.1088/978-0-7503-3163-0 Version:20200301 IOPebooks BritishLibraryCataloguing-in-PublicationData:Acataloguerecordforthisbookisavailable fromtheBritishLibrary. PublishedbyIOPPublishing,whollyownedbyTheInstituteofPhysics,London IOPPublishing,TempleCircus,TempleWay,Bristol,BS16HG,UK USOffice:IOPPublishing,Inc.,190NorthIndependenceMallWest,Suite601,Philadelphia, PA19106,USA To my Alma Mater high school, Quxian High School (Quxian, Sichuan, China), where I spent the most beautiful two years of my life. Contents Preface xii Acknowledgements xiv Author biography xv 1 Fundamentals of thermoacoustic tomography 1-1 1.1 Thermoacoustic effect 1-1 1.2 Image reconstruction methods 1-3 1.2.1 Delay-and-sum beam forming algorithm 1-3 1.2.2 A-line/B-mode image formation method 1-3 1.2.3 Iterative nonlinear algorithm 1-4 1.3 Instrumentation 1-9 References 1-10 2 Quantitative thermoacoustic tomography 2-1 2.1 Recovery of tissue conductivity 2-1 2.2 Simultaneous recovery of absorbed microwave energy density and 2-13 acoustic velocity 2.3 Simultaneous recovery of conductivity and elasticity 2-15 2.3.1 Image reconstruction algorithm 2-15 2.3.2 Numerical simulations 2-18 2.3.3 Phantom experiments 2-18 2.3.4 Results 2-18 2.3.5 Discussion and conclusion 2-20 References 2-22 3 Image enhancement: software and hardware approaches 3-1 3.1 Dual mesh scheme 3-1 3.2 Adjoint sensitivity method 3-3 3.3 TVM scheme 3-4 3.4 Rigorous incident electric field and adaptive minimization strategy 3-6 3.4.1 Simulations and experiments 3-8 3.4.2 Discussion 3-12 3.5 Parallel computation 3-12 ix