ebook img

Thermo-Mechanical Modeling of Additive Manufacturing PDF

296 Pages·2017·22.74 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Thermo-Mechanical Modeling of Additive Manufacturing

Thermo-Mechanical Modeling of Additive Manufacturing Edited by Michael Gouge and Pan Michaleris THERMO-MECHANICAL MODELING OF ADDITIVE MANUFACTURING This page intentionally left blank THERMO-MECHANICAL MODELING OF ADDITIVE MANUFACTURING Editedby Michael Gouge Pan Michaleris Butterworth-HeinemannisanimprintofElsevier TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates Copyright©2018ElsevierInc.Allrightsreserved. Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicormechanical, includingphotocopying,recording,oranyinformationstorageandretrievalsystem,withoutpermissioninwritingfrom thepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbe foundatourwebsite:www.elsevier.com/permissions. ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(otherthanas maybenotedherein). Notices Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary. Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusingany information,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodstheyshouldbe mindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility. Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliabilityforany injuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,orfromanyuseor operationofanymethods,products,instructions,orideascontainedinthematerialherein. LibraryofCongressCataloging-in-PublicationData AcatalogrecordforthisbookisavailablefromtheLibraryofCongress BritishLibraryCataloguing-in-PublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary ISBN:978-0-12-811820-7 ForinformationonallButterworth-Heinemannpublications visitourwebsiteathttps://www.elsevier.com/books-and-journals Publisher:MatthewDeans AcquisitionEditor:ChristinaGifford EditorialProjectManager:AnnaValutkevich ProductionProjectManager:NickyCarter Designer:MarkRogers TypesetbyVTeX Contents List of Contributors xi 2. TheFiniteElementMethodforthe About the Editors xiii Thermo-MechanicalModelingofAdditive Acknowledgments xv ManufacturingProcesses MICHAELGOUGE,PANMICHALERIS, I ERIKDENLINGER,ANDJEFFIRWIN THE FUNDAMENTALS OF Introduction 19 ADDITIVE MANUFACTURING 2.1 ANon-LinearFiniteElementPrimer 19 2.2 TheDecoupledModel 20 MODELING 2.3 ModelTypes 20 2.4 TheThermalModel 21 1. AnIntroductiontoAdditive 2.4.1. ThermalEquilibrium 21 ManufacturingProcessesandTheir 2.4.2. TheHeatInputModel 21 ModelingChallenges 2.4.3. BoundaryLosses 22 2.5 TheMechanicalModel 25 MICHAELGOUGEANDPANMICHALERIS 2.5.1. SmallDeformationTheory 26 1.1 Motivation 3 2.5.2. LargeDeformationTheory 26 1.2 AdditiveManufacturingProcesses 5 2.5.3. TheQuietActivationStrategy 27 1.2.1. MultipassWelding 5 2.5.4. TheInactiveActivationStrategy 28 1.2.2. DirectedEnergyDeposition 6 2.5.5. TheHybridActivationStrategy 28 1.2.3. LaserPowderBedFusionsystems 8 2.6 TemperatureDependentMaterialProperties 28 1.3 ChallengesintheFiniteElementModelingof 2.7 FiniteElementMeshingforAdditive AMProcesses 9 Processes 29 1.3.1. MaterialAddition 10 2.7.1. MeshConvergenceandHeuristics 29 1.3.2. HeatInput 10 2.7.2. MeshConvergenceandHeuristics 29 1.3.3. ThermalLosses 11 2.7.3. AdaptiveMeshing 30 2.8 ModelVerification 30 1.3.4. DistortionandResidualStress 11 2.8.1. AnalyticalSolutions 30 1.3.5. TemperatureDependentMaterial Properties 12 2.8.2. ThePatchTest 32 1.3.6. MicrostructuralChanges 12 2.8.3. TheMethodofManufactured Solutions 32 1.3.7. ReducingSimulationTime 14 2.9 ValidationandErrorAnalysis 34 1.4 Conclusions 14 2.9.1. ThermalErrorAnalysis 34 References 14 2.9.2. MechanicalErrorAnalysis 35 2.10 Conclusions 37 References 37 v vi CONTENTS II 4. ConductionLossesduetoPartFixturing DuringLaserCladding THERMOMECHANICAL MODELING OF DIRECT MICHAELGOUGE ENERGY DEPOSITION 4.1 Introduction 61 PROCESSES 4.2 ModelingApproach 63 4.2.1. ConductionLosses,SurfaceContact, 3. ConvectionBoundaryLossesDuring andGapConductance 63 4.3 ExperimentalProcedures 64 LaserCladding 4.4 NumericalImplementation 66 MICHAELGOUGE 4.4.1. FESolver 66 4.4.2. TheFiniteElementMesh 67 3.1 Introduction 41 4.4.3. ConvectionModel 69 3.2 ModelingApproach 43 4.4.4. TheGapConductanceModel 69 3.3 ExperimentalProcedures 43 4.4.5. ModelingAssumptionsand 3.4 NumericImplementation 45 Approximations 72 3.4.1. TemporalDiscretization 45 4.5 ResultsandDiscussion 72 3.4.2. FiniteElementMesh 45 4.5.1. CantileveredFixture 72 3.4.3. TheEvolvingFreeSurface 46 4.5.2. BenchClampedFixture 74 3.4.4. NoConvection 47 4.5.3. ThermalLossModes 76 3.4.5. NaturalConvection 47 4.6 Conclusions 77 3.4.6. ForcedConvectionFromLumped References 78 CapacitanceExperiments 48 3.4.7. ForcedConvectionBasedonPublished 5. MicrostructureandMechanical Research 48 PropertiesofAMBuilds 3.4.8. Hot-FilmAnemometry 48 3.4.9. HeightenedNaturalConvection 52 ALLISONM.BEESE 3.5 AnalysisCases 52 3.5.1. Case1:NoConvection 52 5.1 Introduction 81 5.2 ExperimentalCharacterization 82 3.5.2. Case2:NaturalConvectionAlone 52 5.2.1. Microstructure 82 3.5.3. Case3:ForcedConvectionFrom LumpedCapacitanceExperiments 52 5.2.2. Hardness 82 3.5.4. Case4:ForcedConvectionFromHeat 5.2.3. YieldandUltimateTensileStrengths, TransferLiterature 52 Elongation 82 3.5.5. Case5:ForcedConvectionMeasuredby 5.2.4. Fatigue 82 Hot-FilmAnemometry 53 5.3 ExperimentalResults 83 3.5.6. Case6:ForcedConvectionWitha 5.3.1. Microstructure 83 Non-EvolvingSurface 53 5.3.2. Hardness 84 3.5.7. Case7:HeightenedNatural 5.3.3. YieldStrength,UltimateTensile Convection 53 Strength,andElongation 86 3.6 ResultsandDiscussion 54 5.3.4. Fatigue 88 3.6.1. TheEffectofConvectionBoundary 5.4 Discussion 89 Conditions 54 5.5 Conclusions 89 3.7 Conclusions 57 References 89 References 58 vii CONTENTS 6. UnderstandingMicrostructureEvolution 8.2 DEDSimulation 138 DuringAdditiveManufacturingofMetallic 8.3 DEDProcessMeasurementSetupandTest AlloysUsingPhase-FieldModeling Cases 139 8.3.1. DepositionCases 139 YANZHOUJI,LEICHEN,ANDLONG-QINGCHEN 8.3.2. MeasurementSetup 140 8.4 ResultsfromtheIn-SituMeasurements 141 6.1 MicrostructuresinAdditivelyManufactured 8.5 NumericalImplementation 143 MetallicAlloys 93 8.5.1. FiniteElementMesh 144 6.1.1. ExperimentalObservations 94 8.5.2. DeterminationoftheHeatSourceand 6.1.2. ComputationalSimulations 97 SurfaceLossVariables 144 6.2 Multi-ScalePhase-FieldModelforAMof 8.6 Thermo-MechanicalModelingResults 147 Alloys 99 8.7 Conclusions 149 6.2.1. LinkageBetweentheThree References 150 Sub-Models 100 6.2.2. Finite-ElementThermalModel 100 9. ResidualStressandDistortionModeling 6.2.3. Grain-ScalePhase-FieldModel:Grain ofElectronBeamDirectManufacturing Growth&Solidification 102 Ti-6Al-4V 6.2.4. Sub-Grain-ScalePhase-FieldModel: Solid-StatePhaseTransformations 106 ERIKR.DENLINGER 6.3 SummaryandOutlook 112 Acknowledgements 113 9.1 Introduction 153 References 113 9.2 ElectronBeamDepositionSimulation 154 9.2.1. MechanicalAnalysis 155 7. ModelingMicrostructureofAM 9.3 CalibrationandValidation 156 ProcessesUsingtheFEMethod 9.3.1. DepositionProcess 156 9.3.2. InSituDistortionandTemperature 157 JEFFIRWIN 9.3.3. ResidualStress 157 9.4 NumericalImplementation 159 7.1 Introduction 117 9.5 ResultsandDiscussion 160 7.2 MicrostructuralModel 119 9.5.1. ThermalHistory 160 7.2.1. PhaseFractionsandMorphology 119 9.5.2. DistortionHistory 162 7.2.2. αLathWidth 122 9.5.3. ResidualStress 163 7.2.3. SummaryofModel 123 9.6 Conclusions 164 7.2.4. ModelOptimization 124 References 165 7.3 ExperimentalImplementation 124 7.3.1. DepositionProcess 124 10. Thermo-MechanicalModelingofLarge 7.3.2. MeasurementofαLathWidth 125 ElectronBeamBuilds 7.4 ResultsandDiscussion 126 7.5 Conclusions 132 ERIKR.DENLINGER References 133 10.1 Introduction 167 8. Thermo-MechanicalModelingofThin 10.2 ElectronBeamDepositionSimulation 169 WallBuildsusingPowderFedDirected 10.3 MeshCoarseningAlgorithm 169 10.3.1. MergingofElementsLayerby EnergyDeposition Layer 169 JARREDC.HEIGEL 10.3.2. InterpolationofGaussPoint Values 169 8.1 Introduction 137 viii CONTENTS 10.3.3. VerificationofLayerbyLayer 12.3.1. DynamicAdaptiveMesh CoarseningAlgorithm 171 Implementation 201 10.3.4. VerificationResults 172 12.3.2. StaticNonconformingMesh 10.4 ValidationonaLargePart 173 Analysis 204 10.5 NumericalImplementation 175 12.3.3. StaticConformingMeshAnalysis 204 10.6 ResultsandDiscussion 177 12.4 Verification 206 10.7 Conclusions 178 12.4.1. NumericalImplementation 206 References 179 12.4.2. AssessmentofAccuracy 206 12.5 ResultsandDiscussion 209 11. MitigationofDistortioninLarge 12.5.1. EffectofCoarseningTemperatureon AdditiveManufacturingParts DynamicMeshingAccuracy 209 12.6 Conclusions 211 ERIKR.DENLINGER References 211 11.1 Introduction 183 13. ThermomechanicalModel 11.2 EvaluationofDistortionMitigation Techniques 185 DevelopmentandIn-SituExperimental 11.2.1. ElectronBeamDeposition ValidationoftheLaserPowder-BedFusion Simulation 185 Process 11.2.2. NumericalModel 185 ERIKR.DENLINGER 11.2.3. DepositionStrategies 186 11.2.4. SmallModelResults 188 13.1 Introduction 215 11.3 MitigationTechniquesAppliedonaLarge 13.2 ModelingApproach 217 Part 190 13.3 ExperimentalValidation 217 11.3.1. ExperimentalProcedure 190 13.3.1. ProcessingParameters 217 11.3.2. DepositionCases 191 13.3.2. DistortionandTemperature 11.4 ResultsandDiscussion 192 Measurements 218 11.5 Conclusions 194 13.4 NumericalImplementation 218 References 194 13.4.1. SolutionMethod 218 13.4.2. TheFiniteElementMesh 220 III 13.4.3. BoundaryConditions 221 THERMOMECHANICAL 13.4.4. MaterialDepositionModeling 221 13.5 ResultsandDiscussion 221 MODELING OF POWDER BED 13.5.1. ThermalResults 221 PROCESSES 13.5.2. MechanicalResults 221 13.6 Conclusions 225 12. DevelopmentandNumerical References 225 VerificationofaDynamicAdaptiveMesh CoarseningStrategyforSimulatingLaser 14. StudyoftheEvolutionofDistortion PowerBedFusionProcesses DuringthePowderBedFusionBuild ProcessUsingaCombinedExperimental ERIKR.DENLINGER andModelingApproach 12.1 Introduction 199 ALEXANDERJ.DUNBAR 12.2 ModelingApproach 201 12.3 MeshingStrategies 201 14.1 Introduction 229 14.2 Experiment 231 ix CONTENTS 14.2.1. ExperimentalSetup 231 15.4 NumericalImplementation 256 14.2.2. ExperimentalResults 234 15.4.1. AutomaticMeshGenerationFroma 14.3 PowderBedFusionSimulation 237 SourceCADFile 256 14.3.1. NumericalImplementation 237 15.4.2. DwellTimeMultiplier 257 14.4 ResultsandDiscussion 239 15.4.3. ValidationCriteria 257 14.4.1. ModelComparisontoExperimental 15.5 ResultsandDiscussion 258 Measurements 239 15.5.1. MeshConvergenceStudyResults 258 14.4.2. SubstrateDeformation 241 15.5.2. ValidationStudy 258 14.4.3. ExtensionofRotatingScanPattern 15.6 Conclusions 261 Case 243 References 261 14.4.4. DistortionEvolutioninTime 244 14.5 Conclusion 248 A. Appendix References 249 A.1 MaterialPropertiesUsedinFEModeling 265 15. ValidationoftheAmericanMakes A.1.1. Aluminum6061Properties 265 Builds A.1.2. Inconel®625Properties 265 A.1.3. Inconel®718Properties 267 JEFFIRWINANDMICHAELGOUGE A.1.4. SAE304 268 15.1 Introduction 251 A.1.5. Ti-6Al-4V 268 15.2 ModelingApproach 254 References 269 15.3 ExperimentalProcedures 255 15.3.1. ExperimentalValidationGeometry 255 Index 271 15.3.2. Post-ProcessMeasurementof Distortion 255

Description:
Thermo-mechanical Modeling of Additive Manufacturingprovides the background, methodology and description of modeling techniques to enable the reader to perform their own accurate and reliable simulations of any additive process. Part I provides an in depth introduction to the fundamentals of additiv
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.