ebook img

Thermal Convection, Magnetic Field, and Differential Rotation in Solar-type Stars PDF

88 Pages·2015·6.663 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Thermal Convection, Magnetic Field, and Differential Rotation in Solar-type Stars

Springer Theses Recognizing Outstanding Ph.D. Research Hideyuki Hotta Thermal Convection, Magnetic Field, and Differential Rotation in Solar-type Stars Springer Theses Recognizing Outstanding Ph.D. Research Aims and Scope The series “Springer Theses” brings together a selection of the very best Ph.D. theses from around the world and across the physical sciences. Nominated and endorsed by two recognized specialists, each published volume has been selected for its scientific excellence and the high impact of its contents for the pertinent fieldofresearch.Forgreateraccessibilitytonon-specialists,thepublishedversions includeanextendedintroduction,aswellasaforewordbythestudent’ssupervisor explaining the special relevance of the work for the field. As a whole, the series will provide a valuable resource both for newcomers to the research fields described, and for other scientists seeking detailed background information on specialquestions.Finally,itprovidesanaccrediteddocumentationofthevaluable contributions made by today’s younger generation of scientists. Theses are accepted into the series by invited nomination only and must fulfill all of the following criteria (cid:129) They must be written in good English. (cid:129) The topic should fall within the confines of Chemistry, Physics, Earth Sciences, Engineering and related interdisciplinary fields such as Materials, Nanoscience, Chemical Engineering, Complex Systems and Biophysics. (cid:129) The work reported in the thesis must represent a significant scientific advance. (cid:129) Ifthethesisincludespreviouslypublishedmaterial,permissiontoreproducethis must be gained from the respective copyright holder. (cid:129) They must have been examined and passed during the 12 months prior to nomination. (cid:129) Each thesis should include a foreword by the supervisor outlining the signifi- cance of its content. (cid:129) The theses should have a clearly defined structure including an introduction accessible to scientists not expert in that particular field. More information about this series at http://www.springer.com/series/8790 Hideyuki Hotta Thermal Convection, Magnetic Field, and Differential Rotation in Solar-type Stars Doctoral Thesis accepted by The University of Tokyo, Tokyo, Japan 123 Author(Present Address) Supervisor Dr. HideyukiHotta Assoc. Prof. TakaakiYokoyama HAO/NCAR The Universityof Tokyo Boulder, CO Tokyo USA Japan ISSN 2190-5053 ISSN 2190-5061 (electronic) Springer Theses ISBN 978-4-431-55398-4 ISBN 978-4-431-55399-1 (eBook) DOI 10.1007/978-4-431-55399-1 LibraryofCongressControlNumber:2014959127 SpringerTokyoHeidelbergNewYorkDordrechtLondon ©SpringerJapan2015 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilarmethodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthis book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained hereinorforanyerrorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper SpringerJapanKKispartofSpringerScience+BusinessMedia(www.springer.com) Parts of this thesis have been published in the following journal articles: H. Hotta, M. Rempel, and T. Yokoyama, 2014, ApJ, 786, 24 H. Hotta, M. Rempel, and T. Yokoyama, 2015, ApJ, 798, 51 ’ Supervisor s Foreword This thesis describes the studies on the solar interior where turbulent thermal convection plays an important role. Dr. Hideyuki Hotta solved, for the first time, one of the long-standing issues in solar physics, i.e., the maintenance mechanism of the solar differential rotation in the near-surface shear layer. He attacked this problemwithhisnewlydevelopedapproach,thereducedspeedofsoundtechnique, which enabled him to study the surface and deep solar layers in a self-consistent manner. This technique also made it possible to achieve an unprecedented performance in the solar convection simulations for use of massively parallel supercomputerssuchastheRIKENKsystem.Itwasfoundthattheturbulenceand the mean flows such as the differential rotation and the meridional circulation mutuallyinteractwitheachothertomaintaintheflowstructuresinthesun.Recent observations by helioseismology support his proposed theoretical mechanism. He also addressed the generation of the magnetic field in such turbulent convective motions, which is an important step forward for the solar cyclic dynamo research. Tokyo, Japan, December 2014 Assoc. Prof. Takaaki Yokoyama vii Acknowledgments I would like to express my gratitude to my supervisor Takaaki Yokoyama for his contributiontomyeducationinthelast6years.IwouldalsoliketothankMatthias Rempel of the High Altitude Observatory (HAO), USA, for his assistance during mystay inBoulder andhis insightfuladvice.Igreatlyappreciate thehelp ofHAO scientists Mark Miesch, Nick Featherstone, and Yuhong Fan. I acknowledge the members of the Yokoyama lab Yusuke Iida, Naomasa Kitagawa, Shin Toriumi, YukiMatsui,HaruhisaIijima,TakafumiKaneko,ShyuoyangWang,ShunyaKono, andTetsuyaNasuda,andthemembersintheSTPgroupattheUniversityofTokyo forhelpfuldiscussionsintheseminarsandcolloquium.Thenumericalcalculations in this thesis were carried out in the K-computer and FX10. My work was supportedbyaJSPSfellowship.MystayattheHAOandtheMaxPlanckInstitute weresupportedbytheJSPSstudyabroadprogram.Finally,Iwouldliketoexpress my deepest thanks to my parents and other family members for their continuous support and encouragement. ix Contents 1 General Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Solar Structure and Mean Flow . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Solar Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.2 Observation of Solar Mean Flow, Differential Rotation and Meridional Flow. . . . . . . . . . . . . . . . . . . . 3 1.2 Theory and Numerical Calculation for Differential Rotation and Meridional Flow. . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.1 Gyroscopic Pumping and Thermal Wind Balance . . . . . . 5 1.2.2 Numerical Calculations for Differential Rotation and Meridional Flow . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3 Remaining Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.4 Reduced Speed of Sound Technique. . . . . . . . . . . . . . . . . . . . . 13 1.5 Thesis Goals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2 Basic Equations and Development of Numerical Code . . . . . . . . . . 19 2.1 Model Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.1 Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.2 Background Stratification and Radiation. . . . . . . . . . . . . 20 2.1.3 Setting for RSST. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.1.4 Divergence Free Condition for Magnetic Field . . . . . . . . 22 2.1.5 Equation of State. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2 Numerical Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.2.1 Space Derivative and Time Integration. . . . . . . . . . . . . . 24 2.2.2 Artificial Viscosity. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.2.3 Peano-Hilbert Space Filling Curve for MPI Communication. . . . . . . . . . . . . . . . . . . . . . . . 26 2.2.4 Yin-Yang Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.2.5 Big Data Management . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.2.6 Code Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 xi xii Contents 3 Structure of Convection and Magnetic Field Without Rotation. . . . 33 3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.2 Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.3 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.3.1 Structure of Convection and Magnetic Field . . . . . . . . . . 35 3.3.2 Integrated Energy Flux . . . . . . . . . . . . . . . . . . . . . . . . 40 3.3.3 Analysis Using Spherical Harmonics for Hydrodynamic Cases. . . . . . . . . . . . . . . . . . . . . . . . 42 3.3.4 Analysis Using Spherical Harmonics and Probability Density Function for Magnetohydrodynamic Cases . . . . . 44 3.3.5 Generation and Transportation of Magnetic Field. . . . . . . 48 3.4 Discussion and Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4 Reproduction of Near Surface Shear Layer with Rotation . . . . . . . 59 4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.2 Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.3 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.4 Calculation with High Rotation Rate and Solar Luminosity. . . . . 70 4.5 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.1 Summary of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.1.1 Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.1.2 Findings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.2 Remaining Problems and Future Work . . . . . . . . . . . . . . . . . . . 76 5.2.1 Comparison with Helioseismology. . . . . . . . . . . . . . . . . 76 5.2.2 Proper Reproduction of Solar Differential Rotation . . . . . 77 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Curriculum Vitae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.