ebook img

Thermal Analysis of Fermilab Mu2e Beamstop and Structural Analysis of Beamline Components PDF

103 Pages·2017·4.49 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Thermal Analysis of Fermilab Mu2e Beamstop and Structural Analysis of Beamline Components

ABSTRACT THERMAL ANALYSIS OF FERMILAB MU2E MUON BEAMSTOP AND STRUCTURAL ANALYSIS OF BEAMLINE COMPONENTS Colin S. Narug, M.S. Department of Mechanical Engineering Northern Illinois University, 2018 Dr. Nicholas A. Pohlman, Director The Mu2e project at Fermilab National Accelerator Laboratory aims to observe the unique conversion of muons to electrons. The success or failure of the experiment to observe this conversion will further the understanding of the standard model of physics. Using the particle accelerator, protons will be accelerated and sent to the Mu2e experiment, which will separate the muons from the beam. The muons will then be observed to determine their momentum and the particle interactions occur. At the end of the Detector Solenoid, the internal components will need to absorb the remaining particles of the experiment using polymer absorbers. Because the internal structure of the beamline is in a vacuum, the heat transfer mechanisms that can disperse the energy generated by the particle absorption is limited to conduction and radiation. To determine the extent that the absorbers will heat up over one year of operation, a transient thermal finite element analysis has been performed on the Muon Beam Stop. The levels of energy absorption were adjusted to determine the thermal limit for the current design. Structural finite element analysis has also been performed to determine the safety factors of the Axial Coupler, which connect and move segments of the beamline. The safety factor of the trunnion of the Instrument Feed Through Bulk Head has also been determined for when it is supporting the Muon Beam Stop. The results of the analysis further refine the design of the beamline components prior to testing, fabrication, and installation. FERMILAB-MASTERS-2018-01 NORTHERN ILLINOIS UNIVERSITY DE KALB, ILLINOIS MAY 2018 THERMAL ANALYSIS OF FERMILAB MU2E MUON BEAM STOP AND STRUCTURAL ANALYSIS OF BEAMLINE COMPONENTS BY COLIN NARUG © 2018 Colin Naurg A THESIS SUBMITTED TO THE GRADUATE SCHOOL IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE MASTER OF SCIENCE DEPARTMENT OF MECHANICAL ENGINEERING Thesis Director: Nicholas A. Pohlman ii ACKNOWLEDGEMENTS I would like to thank Fermilab National Accelerator University for the opportunity to work on the Mu2e experiment with the support of Northern Illinois University, the Department of Energy, and the National Science Foundation. I would also like to thank Rodger Bossert, George Ginther, Robert Wands, Luke Martin, and Chad Strain for the advice, feedback, and assistance I have received from them over the past year. I am also grateful to Nicholas Pohlman for the opportunity to work on this project, advice, and for serving as the chair of my thesis committee. Additionally, I would like to thank Iman Salehinia, John Shelton, and David Hadin for serving on my thesis committee. Finally, I would like to thank everyone who has contributed to the Mu2e project whose work have made this thesis possible. TABLE OF CONTENTS TABLE OF CONTENTS .................................................................................................................................... iii LIST OF TABLES ................................................................................................................................................. v LIST OF FIGURES ............................................................................................................................................... vi CHAPTER 1: INTRODUCTION ...................................................................................................................... 1 1.1: Overview ...................................................................................................................................................... 1 1.2: Experiment Setup ...................................................................................................................................... 1 1.3: Muon Beam Stop ....................................................................................................................................... 2 1.4: Finite Element Analysis ........................................................................................................................... 4 1.5: Materials Selection .................................................................................................................................... 6 1.6: Thesis Objective ......................................................................................................................................... 6 CHAPTER 2: THERMAL ANALYSIS OF THE MBS ............................................................................. 8 2.1: Overview of Problem ............................................................................................................................... 8 2.1.1: Vacuum Behavior ........................................................................................................................... 13 2.1.2: Radiation Damage .......................................................................................................................... 14 2.2: Finite Element Analysis ........................................................................................................................ 15 2.2.1: Convection ....................................................................................................................................... 18 2.2.2: Radiation ........................................................................................................................................... 19 2.2.3: Thermal Contact Resistance ........................................................................................................ 20 2.3 Finite Element Analysis Setup ............................................................................................................. 22 2.3.1: Model ................................................................................................................................................. 23 2.3.2: Mesh ................................................................................................................................................... 28 2.3.3: Boundary Conditions..................................................................................................................... 29 2.4: Simulation results ................................................................................................................................... 31 2.5: Discussion ................................................................................................................................................. 40 Chapter 3: Axial Coupler ................................................................................................................................... 46 3.1: Overview of Problem ............................................................................................................................ 46 iv 3.2: Axial Coupler Redesign ........................................................................................................................ 48 3.2.1: Bearing Block ............................................................................................................................ 49 3.2.2: Bar Design ........................................................................................................................................ 50 3.2.3: Connecter Piece .............................................................................................................................. 51 3.2.4 Final Design ...................................................................................................................................... 53 3.2.5: Equations .......................................................................................................................................... 55 3.3: Finite Element Analysis Setup ............................................................................................................ 57 3.4: Simulation results ................................................................................................................................... 61 3.5: Discussion ................................................................................................................................................. 69 Chapter 4: MBS Trunnion Analysis ............................................................................................................... 72 4.1: Introduction .............................................................................................................................................. 72 4.2: Model ......................................................................................................................................................... 73 4.3: Simulation Setup ..................................................................................................................................... 74 4.4: Results ........................................................................................................................................................ 76 4.5: Discussion ................................................................................................................................................. 82 Chapter 5: Result Summary and Future Work ............................................................................................ 83 REFERENCES ..................................................................................................................................................... 85 APPENDIX: THERMAL ANALYSIS MODEL AND THERMAL LOAD COMPARISON .... 88 LIST OF TABLES Table 1: Material Properties Used for Simulations and Analysis ................................................... 6 Table 2: Thermal Resistance of Materials Under Vacuum .......................................................... 22 Table 3: Summary of Applied Energy Loads for Each Colored Region ...................................... 30 Table 4: Results Summary ............................................................................................................ 41 Table 5: Lengths Between Component Positions ........................................................................ 51 Table 6: Force Reactions on Bolts in Tension .............................................................................. 67 Table 7: Reaction Forces in Tension ............................................................................................ 68 Table 8: Reaction Forces in Compression .................................................................................... 68 Table 9: Short Axial Coupler Connection Reaction Forces.......................................................... 69 Table 10: Safety Factor Summary ................................................................................................ 71 LIST OF FIGURES Figure 1: Production, Transport, and Detector Solenoid ............................................................................. 2 Figure 2: Cutaway View of MBS, Stainless Steel Tube and Trunnion (Grey), External Absorbers (Blue), Interior Absorbers (Red), End Plug (Yellow) .................................................................................. 3 Figure 3: Radiation Load on MBS ................................................................................................................. 10 Figure 4: Simulation Photon Histogram with Initial Simulation Cutoff (Redline), Number of Occurances (Vertical Axis) vs Log10 Power of Energy in GeV (Horizontal Axis) ....................... 10 Figure 5: Simulation Electron Histogram with Initial Simulation Cutoff (Redline), Number of Occurrences (Vertical Axis) vs Log10 Power of Energy in GeV (Horizontal Axis) ...................... 11 Figure 6:Simulation Positron Histogram with Initial Simulation Cutoff (Redline), Number of Occurrences (Vertical Axis) vs Log10 Power of Energy in GeV (Horizontal Axis) ...................... 11 Figure 7: Integral Histogram Power Density, mW/cm³ for several transport thresholds at the upstream (1), middle (2) and downstream (3) end of the Transport Solenoid ................................... 12 Figure 8: Integral Histogram of Power Density, mW/cm³ as a for of optimal (opt) steps and default (def) steps and for different transport thresholds at the upstream (1), middle (2) and downstream (3) end of the Transport Solenoid .......................................................................................... 12 Figure 9: Concrete Cutout View of MBS (not visible) contained in the VPSP and IFB ................ 19 Figure 10: Zoomed in view of area of conduction ..................................................................................... 21 Figure 11: Cross Sectional Area of Downstream Polymer Segment in mm ...................................... 24 Figure 12: Cross Sectional Area of Midstream Polymer Segment in mm .......................................... 24 Figure 13: Internal Absorber Ring .................................................................................................................. 25 Figure 14: Teamcenter Version of the MBS, VPSP, and IFB Assembly ............................................ 26 Figure 15: Model Used for Thermal Analysis ............................................................................................. 27 vii Figure 16: Sectioned Model Colored to Represent Heat Magnitude of Each Section. The Colors Represented, decreasing in energy level, are Grey, Red, Orange, Pink, Peach, and Blue.............. 27 Figure 17: Mesh of Model ................................................................................................................................. 28 Figure 18: Applied Boundary Conditions ..................................................................................... 31 Figure 19: Thermal Distribution with HDPE Absorbers .......................................................................... 32 Figure 20: Thermal Distribution with PS Absorbers ................................................................................. 33 Figure 21: Maximum and Minimum Temperature over Time for HDPE with Dotted Trendline 34 Figure 22: Maximum and Minimum Temperature over Time for PS with Dotted Trendline ....... 34 Figure 23: Initial Analysis Mesh (Left); Scaled Analysis Mesh (Right) ............................................. 35 Figure 24: Temperature of MBS with PS Internal Absorbers, SF 1 ..................................................... 37 Figure 25:Temperature of MBS with PS Internal Absorbers, SF 5 ...................................................... 37 Figure 26:Temperature of MBS with PS Internal Absorbers, SF 10 .................................................... 38 Figure 27: Maximum and Minimum Temperature over Time for MBS with PS Internal Absorbers with Dotted Trendline, SF 1 ......................................................................................................... 39 Figure 28: Maximum and Minimum Temperature over Time for MBS with PS Internal Absorbers, SF 5 .................................................................................................................................................... 39 Figure 29: Maximum and Minimum Temperature over Time for MBS with PS Internal Absorbers, SF 10 .................................................................................................................................................. 40 Figure 30: Summary of Scaled Simulation Results ................................................................................... 41 Figure 31: Temperature Distribution of MBS End Plug with PS Internal Absorbers from Initial Analysis; at 1.7895*10^7s (Left), at 2.0*10^7s (Right) ........................................................................... 43 Figure 32: Logarithmic Plot of Original Simulation Results with Linear Trendlines .................... 44 Figure 33: Plot of Scaled Simulation Results with Linear Trendlines ................................................. 45 Figure 34: Axial Coupler in Rail System ...................................................................................................... 47 Figure 35: Previous Axial Coupler Design ................................................................................................. 47 viii Figure 36: Dimensions of Bearing Block Relative to other beamline components. ....................... 49 Figure 37: Bearing Block for the Tracker ..................................................................................................... 50 Figure 38: L-Bar Connection............................................................................................................................ 51 Figure 39: Connecter Piece Design ................................................................................................................ 52 Figure 40: Short Axial Coupler Jaw Connecter .......................................................................................... 53 Figure 41: Explosion View of Axial Coupler .............................................................................................. 53 Figure 42: L-Bar Assembly of Axial Coupler ............................................................................................. 54 Figure 43: Short Axial Coupler Assembly ................................................................................................... 54 Figure 44: Axial Coupler Mesh ....................................................................................................................... 58 Figure 45: Short Axial Coupler Mesh ............................................................................................................ 59 Figure 46: Forces Applied to Axial Coupler ................................................................................................ 60 Figure 47: Forces Applied to Short Axial Coupler .................................................................................... 60 Figure 48: Axial Coupler, Total Deformation, Compression ................................................................. 62 Figure 49: Axial Coupler, Total Deformation, Tension ........................................................................... 62 Figure 50: Short Coupler, Total Deformation, Compression .................................................................. 63 Figure 51: Short Coupler, Total Deformation, Tension ........................................................................... 63 Figure 52: Axial Coupler, Equivalent Stress in Compression ................................................................ 64 Figure 53: Axial Coupler, Equivalent Stress in Tension .......................................................................... 65 Figure 54: Short Axial Coupler, Equivalent Stress in Compression ..................................................... 65 Figure 55: Short Axial Coupler, Equivalent Stress in Tension .............................................................. 66 Figure 56: Bolt Numbering on Axial Coupler ............................................................................................. 66 Figure 57: Stress Concentration on Short Axial Coupler ......................................................................... 67 ix Figure 58: Bolt Numbering ............................................................................................................................... 68 Figure 59: Trunnion Location on IFB ............................................................................................................ 73 Figure 60: Trunnion Assembly, Trunnion Cap (Copper), IFB Trunnion (Silver) ............................ 74 Figure 61: Generated Mesh ............................................................................................................................... 75 Figure 62: Applied Constraints ........................................................................................................................ 76 Figure 63: Total Deformation .......................................................................................................................... 77 Figure 64: Side View of the Total Deformation of the Trunnion Without Cap ................................ 77 Figure 65: Side view of Total Deformation of the Trunnion Cap ......................................................... 78 Figure 66: Equivalent Stress of Assembly ................................................................................................... 78 Figure 67: Equivalent Stress of Trunnion Cap ............................................................................................ 79 Figure 68: Equivalent Stress on Trunnion .................................................................................................... 79 Figure 69: Zoomed in View of Stress Singularity ...................................................................................... 80 Figure 70: Safety Factor of the Trunnion Cap ............................................................................................. 81 Figure 71: Saftey Factor of the Trunnion ..................................................................................................... 81 Figure 72:Simplified VPSP Dimensions ....................................................................................................... 88 Figure 73: Simplified IFB Dimensions ......................................................................................................... 89 Figure 74: Simplified Middle Stainless Steel and Absorbers Dimensions ......................................... 89 Figure 75: Downstream Stainless Steel and Internal Absorber Dimensions ...................................... 90 Figure 76: End Plug Dimensions..................................................................................................................... 90 Figure 77: Internal Absorber Heat Load Comparison ............................................................................... 91 Figure 78: End Plug Heat Load Comparison ............................................................................................... 92 Figure 79: Stainless Steel Shield Heat Load Comparison ....................................................................... 93

Description:
DEPARTMENT OF MECHANICAL ENGINEERING https://www.omega.com/temperature/z/pdf/z088-089.pdf . [Accessed: 15-Dec-2017] [17] ANSYS® Student, Release 17.2, Mechanical APDL, Thermal Analysis Guide, 4. Available: http://www.padtinc.com/blog/the-focus/ansys-mechanical-contact-.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.