ebook img

Theory of Parallel Mechanisms PDF

429 Pages·2013·7.332 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Theory of Parallel Mechanisms

Theory of Parallel Mechanisms MECHANISMS AND MACHINE SCIENCE Volume 6 Series Editor MARCO CECCARELLI Forfurther volumes: http://www.springer.com/series/8779 Zhen Huang (cid:129) Qinchuan Li (cid:129) Huafeng Ding Theory of Parallel Mechanisms ZhenHuang QinchuanLi RoboticsResearchCenter MechatronicDepartment YanshanUniversity ZhejiangSci-TechUniversity Qinhuangdao,Hebei,China Hangzhou,China HuafengDing RoboticsResearchCenter YanshanUniversity Qinhuangdao,China ISSN2211-0984 ISSN2211-0992(electronic) ISBN978-94-007-4200-0 ISBN978-94-007-4201-7(eBook) DOI10.1007/978-94-007-4201-7 SpringerDordrechtHeidelbergNewYorkLondon LibraryofCongressControlNumber:2012942326 #SpringerScience+BusinessMediaDordrecht2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerpts inconnectionwithreviewsorscholarlyanalysisormaterialsuppliedspecificallyforthepurposeofbeing enteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthework.Duplication ofthispublicationorpartsthereofispermittedonlyundertheprovisionsoftheCopyrightLawofthe Publisher’s location, in its current version, and permission for use must always be obtained from Springer.PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter. ViolationsareliabletoprosecutionundertherespectiveCopyrightLaw. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface In the past decades, parallel mechanisms (PMs) have attracted a lot of attention fromtheacademicandindustrialcommunities.Comparedwiththemorecommonly used serial robots, the parallel one has attractive advantages in accuracy, rigidity, capacity,andload-to-weightratio.ThePMshavebeenandarebeingusedinawide variety of applications such as motion simulators, parallel manipulators, nano- manipulators,andmicro-manipulators.Inrecentyears,theresearchandapplication have evolved from general six-DOF PMs to lower-mobility PMs. The essential reason is that lower-mobility PMs have similar applications to general six-DOF PMs,whiletheyaremuchsimplerinstructureandcheaperincost.Theresearchof lower-mobilityPMshasbecomenewhotpoint.Agreatdealofresearchonlower- mobility PM has been carried out all over the world, and a large number of new mechanisms,suchasDelta,Tricept,andmedicalrobots,havebeenbuiltforvarious applications. ThisbookintroducesouroriginalresearcheffortsonPMsforthe30years.The contentsincludemechanismanalysesandsyntheses. Inmechanismanalysis,theunifiedmobilitymethodologyisfirstsystematically presented. The search for a general and valid mobility methodology has been ongoing for about 150 years. Our methodology is proposed based on the screw theory,whosegeneralityandvalidityhaveonlybeenrecentlyproven.Thisisavery important progress. The principle of the kinematic influence coefficient and its new development are described. This principle fits the kinematic analysis of various parallel manipulators including both 6-DOF and lower-mobility ones. The singularities are classified from a new point of view, and new progresses in singularityareintroduced.Theconceptoftheover-determinateinputisresearched, and in practice, there are many machines that work with over-determinate input, i.e., their input number is much bigger than their mobility number. To set the inputstobeaccordanceandoptimumdistributeandtoobtaintheexpectantmotion acceleration is introduced here. A new method of force analysis of PMs is presented.Thismethodbased onscrewtheory canremarkablyreduce thenumber of unknowns and keep the number of simultaneous equilibrium equations not more than six onevery occasion. Inmechanism synthesis, the synthesisof spatial v vi Preface symmetrical PMs is discussed. The synthesis method of difficult four- and five- DOF symmetrical mechanisms, which has first been put forward by our group in 2002, is emphatically introduced. The three-order screw system and its space distribution of kinematic screws for infinite possible motions of lower-mobility mechanismsarealsoanalyzed.Inthelastchapter,anewtheoryforthetopological structure analysis and synthesis of kinematic chains is represented. Based on the array representation of loops in topological graphs of kinematic chains, the basic loopoperationalgebraandauniquerepresentationareintroduced.Addressingthe problemofisomorphismidentificationbyfindingauniquerepresentationofgraphs ispresented.Thisprocessmakesisomorphismidentificationveryeasyandremains efficientevenwhenthekinematicchainlinksincreaseuptothethirties.Theunique numerical atlas database is established and developed for use in the numerical synthesisofmechanisms. Giventhatmanyoftheabovementionedresearcharebasedonthescrewtheory, thebasicscrewtheoryisfirstintroducedinthebeginningofthisbook. Using the screw theory to analyze some issues on spatial mechanisms is quite facile and convenient. This theory is also a good one for various mathematical instruments. A pair of spatial vectors or dual vectors can be used to construct a screw. The screw can then be applied to express the following: (1) position and orientationofaspatialstraightlineingeometry,(2)lineandangularvelocitiesofa rigidbodyinkinematics,(3)forceandmomentinstatics,(4)constraintforceand couple, and (5) rotational and translational mobilities in freedom analysis. The conceptofa screw with six scalarsis then easily used inkinematics and dynamic analysis. The screw can be facilely transformed into various mathematic forms, such as for vector, matrix, algebraic, and geometrical analyses. The screw has a cleargeometricalconcept,anexplicitphysicalmeaning,asimpleexpressingform, andconvenientalgebraiccalculation.Forthesereasons,thescrewconceptiswidely appliedinmechanisms,especiallyrecently,toresolvenumerousdifficultforeland issues. Students, engineers, and practically anyone who has studied linear algebra caneasilyunderstandthetheory. The authors gratefully acknowledge the continuous financial support of the National Natural Science Foundation of China for more than 20 years. This book can be a textbook for postgraduate students and general scientific technique per- sonnel. Some more profound chapters can be suitable for doctoral students in the fieldofmechanicalengineering. YanshanUniversity ZhenHuang Qinhuangdaobeachfront Contents 1 BasicsofScrewTheory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 EquationofaLine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 MutualMomentofTwoLines. . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 LineVectorsandScrews. . . .. . . . . .. . . . . .. . . . . . .. . . . . .. 6 1.4.1 TheLineVector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4.2 TheScrew. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.5 ScrewAlgebra. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.5.1 ScrewSum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.5.2 ProductofaScalarandaScrew. . . . . . . . . . . . . . . . . . . 11 1.5.3 ReciprocalProduct. . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.6 InstantaneousKinematicsofaRigidBody. . . . . . . . . . . . . . . . . 11 1.6.1 InstantaneousRotation. . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.6.2 InstantaneousTranslation. . . . . . . . . . . . . . . . . . . . . . . . 13 1.6.3 InstantaneousScrewMotion. . . . . . . . . . . . . . . . . . . .. . 13 1.7 StaticsofaRigidBody. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.7.1 AForceActingonaBody. . . . . . . . . . . . . . . . . . . . . . . 14 1.7.2 ACoupleActingonaBody. . . . . . . . . . . . . . . . . . . . . . 15 1.7.3 ATwistActingonaBody. . . . . . . . . . . . . . . . . . . . . . . 15 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2 DependencyandReciprocityofScrews. . . . . . . . . . . . . . . . . . . . . . 17 2.1 ConceptofScrewSystems. . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2 Second-OrderScrewSystem. . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.1 LinearCombinationofTwoScrews. . . . . . . . . . . . . . . . 19 2.2.2 SpecialTwo-ScrewSystem. . . . . . . . . . . . . . . . . . . . . . 21 2.3 Third-OrderScrewSystem. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3.1 PrincipalScrews. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.3.2 SpecialThree-ScrewSystems. . . . . . . . . . . . . . . . . . . . . 26 2.4 GrassmannLineGeometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 vii viii Contents 2.5 ScrewDependencyinDifferentGeometricalSpaces. . . . . . . . . . 30 2.5.1 BasicConcepts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.5.2 DifferentGeometricalSpaces. . . . . . . . . . . . . . . . . . . . . 31 2.6 ReciprocalScrews. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.6.1 ConceptofaReciprocalScrew. . . . . . . . . . . . . . . . . . . . 36 2.6.2 DualisminthePhysicalMeaning ofReciprocalScrews. . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.7 ReciprocalScrewSystem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.8 ReciprocalScrewandConstrainedMotion. . . . . . . . . . . . . . . . . 41 2.8.1 ThreeSkewLinesinSpace. . . . . . . . . . . . . . . . . . . . . . 42 2.8.2 ThreeLinesParalleltoaPlaneWithout aCommonNormal. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.8.3 ThreeNon-concurrentCoplanarLines. . . . . . . . . . . . . . 44 2.8.4 ThreeCoplanarandConcurrentLineVectors. . . . . . . . . 44 2.8.5 ThreeLineVectorsConcurrentinSpace. . . . . . . . . . . . . 44 2.8.6 ThreeLineVectorsParallelinSpace. . . . . . . . . . . . . . . 45 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3 MobilityAnalysisPart-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.1 TheConceptandDefinitionofMobility. . . . . . . . . . . . . . . . . . . 47 3.2 MobilityOpenIssue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.2.1 Gr€ubler-KutzbachCriterion. . . . . . . . . . . . . . . . . . . . . . 49 3.2.2 MobilityOpenIssue. . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.3 MobilityPrincipleBasedonReciprocalScrew. . . . . . . . . . . . . . 53 3.3.1 MechanismCanBeExpressedasaScrewSystem. . . . . . 53 3.3.2 DevelopmentofOurUnifiedMobilityPrinciple. . . . . . . 54 3.3.3 TheModifiedG-KFormulas. . . . . . . . . . . . . . . . . . . . . 55 3.4 ConstraintAnalysisBasedonReciprocalScrew. . . . . . . . . . . . . 57 3.4.1 TheCommonConstraint. . . . . . . . . . . . . . . . . . . . . . . . 57 3.4.2 ParallelConstraint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.4.3 Over-Constraint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.4.4 TheGeneralizedKinematicPair. . . . . . . . . . . . . . . . . . . 59 3.5 MobilityPropertyAnalyses. . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.5.1 TranslationandRotation. . . . . . . . . . . . . . . . . . . . . . . . 60 3.5.2 RotationalAxis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.5.3 InstantaneousMobilityandFull-CycleMobility. . . . . . . 63 3.5.4 Full-FieldMobility. . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.5.5 ParasiticMotion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.5.6 Self-motion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4 MobilityAnalysisPart-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.1 MobilityAnalysisofSimpleMechanisms. . . . . . . . . . . . . . . . . 71 4.1.1 OpenChainLinkage. . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.1.2 RobervalMechanism. . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Contents ix 4.1.3 RUPURMechanism. . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.1.4 Herve´ Six-BarMechanism. . . . . . . . . . . . . . . . . . . . . . . 77 4.1.5 Spatial4PMechanism. . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.1.6 DelassusH-H-H-HMechanism. . . . . . . . . . . . . . . . . . . 79 4.1.7 Herve´’sCCCMechanism. . . . . . . . . . . . . . . . . . . . . . . 80 4.2 MobilityAnalysisofClassicalMechanisms. . . . . . . . . . . . . . . . 81 4.2.1 BennettMechanism. . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.2.2 Five-BarGoldbergLinkage. . . . . . . . . . . . . . . . . . . . . . 84 4.2.3 Six-BarGoldbergLinkage. . . . . . . . . . . . . . . . . . . . . . . 86 4.2.4 MyardLinkagewithSymmetricalPlane. . . . . . . . . . . . . 87 4.2.5 BricardwithSymmetricalPlane. . . . . . . . . . . . . . . . . . . 88 4.2.6 AltmannAbb.34Mechanism. . . . . . . . . . . . . . . . . . . . . 91 4.2.7 AltmannSix-BarLinkage. . . . . . . . . . . . . . . . . . . . . . . 94 4.2.8 WaldronSix-BarLinkage. . . . . . . . . . . . . . . . . . . . . . . 95 4.3 MobilityAnalysisofModernParallelMechanisms. . . . . . . . . . . 97 4.3.1 4-DOF4-URUMechanism. . . . . . . . . . . . . . . . . . . . . . 97 4.3.2 3-CRRMechanism. . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 4.3.3 ZlatanovandGosselin’sMechanism. . . . . . . . . . . . . . . . 100 4.3.4 Carricato’sMechanism. . . . . . . . . . . . . . . . . . . . . . . . . 101 4.3.5 DeltaMechanism.. . . . . .. . . . .. . . . . .. . . . .. . . . .. . 103 4.3.6 H4Manipulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 4.3.7 Yang’sMechanism. . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 4.4 MobilityAnalysisofHobermanSwitch-PitchBall. . . . . . . . . . . 114 4.4.1 StructureAnalysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 4.4.2 Three-LinkChain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 4.4.3 Eight-LinkLoop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 4.4.4 DoubleLoop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 4.4.5 Three-LoopChain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 4.4.6 TheWholeMechanism. . . . . . . . . . . . . . . . . . . . . . . . . 122 4.5 Six-HoleCubiformMechanism. . . . . . . . . . . . . . . . . . . . . . . . . 123 4.5.1 Double-HoleLinkage. . . . . . . . . . . . . . . . . . . . . . . . . . 124 4.5.2 Four-HoleLinkage. . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 4.5.3 Five-HoleLinkage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 4.5.4 TheWholeSix-HoleMechanism. . . . . . . . . . . . . . . . . . 132 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 5 KinematicInfluenceCoefficientandKinematicsAnalysis. . . . . . . . 135 5.1 ConceptofKIC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 5.2 KICandKinematicAnalysisofSerialChains. . . . . . . . . . . . . . 138 5.2.1 PositionAnalysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 5.2.2 First-OrderKIC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 5.2.3 Second-OrderKIC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 5.3 KinematicAnalysisofParallelMechanism. . . . . . . . . . . . . . . . 144 5.3.1 First-OrderKICandMechanismVelocityAnalysis. . . . . 146 5.3.2 Second-OrderKICandMechanismAccelerations. . . . . . 150 x Contents 5.4 VirtualMechanismPrincipleofLower-Mobility ParallelMechanisms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 5.4.1 VirtualMechanismPrinciple. . . . . . . . . . . . . . . . . . . . . 155 5.4.2 KinematicAnalysisBasedonVirtual MechanismPrinciple. . . . . . . . . . . . . . . . . . . . . . . . . . . 157 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 6 Full-ScaleFeasibleInstantaneousScrewMotion. . . . . .. . . . . . . .. 163 6.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 6.2 DeterminationofPrincipalScrews.. . . . .. . . . .. . . . . .. . . . .. 165 6.2.1 TheRepresentationofPitchandAxes. . . . .. . . . . . . . .. 165 6.2.2 PrincipalScrewsofaThird-OrderScrewSystem. . . . . . 167 6.3 Full-ScaleFeasibleInstantaneousScrewsofthe3-RPS Mechanism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 6.3.1 VirtualMechanismandJacobianMatrix. . . . . . . . . . . . . 171 6.3.2 UpperPlatformIsParalleltotheBase. . . . . . . . . . . . . . 173 6.3.3 TheUpperPlatformRotatesbyanAngleaAbout Linea a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 2 3 6.3.4 GeneralConfigurationofthe3-RPSMechanism. . . . . . . 177 6.4 Full-ScaleFeasibleInstantaneousScrew ofa3-UPUMechanism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 6.4.1 MobilityAnalysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 6.4.2 First-OrderInfluenceMatricesandKinematic Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 6.4.3 InitialConfiguration. . . . . . . . . . . . . . . . . . . . . . . . . . . 185 6.4.4 TheSecondConfiguration. . . . . . . . . . . . . . . . . . . . . . . 186 6.5 Full-ScaleFeasibleInstantaneousScrewofa3-RPS PyramidMechanism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 6.5.1 First-OrderInfluenceCoefficientMatrix . . . . . . . . . . . . 189 6.5.2 PrincipalScrewsandFull-ScaleFeasibleMotions. . . . . . 191 6.6 A3-DOFRotationalParallelManipulatorWithout IntersectingAxes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 6.6.1 AnOpenProblemofthePMswithIntersectingAxes. . . 201 6.6.2 A3-DRevoluteMechanismWithoutIntersectingAxes. . 203 6.6.3 TheOrientationWorkspace. . . . . . . . . . . . . . . . . . . . . . 207 6.6.4 Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 6.6.5 DiscussionsAbouttheDifferencesBetween theSPMsandthe3-RPSCubicPM. . . . . . . . . . . . . . . . 214 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 7 SpecialConfigurationofMechanisms. . . . . . . . . . . . . . . . . . . . . . . 217 7.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 7.2 ClassificationoftheSpecialConfiguration. . . . . . . . . . . . . . . . . 219 7.2.1 SingularKinematicsClassification. . . . . . . . . . . . . . . . . 220 7.2.2 ClassificationoftheSingularityviaaLinearComplex. . . 223

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.