THEORY OF LIFT AerospaceSeriesList SenseandAvoidinUAS:Research Angelov April2012 andApplications MorphingAerospaceVehicles Valasek April2012 andStructures GasTurbinePropulsionSystems MacIsaacandLangton July2011 BasicHelicopterAerodynamics,3rdEdition SeddonandNewman July2011 AdvancedControlofAircraft,Spacecraft Tewari July2011 andRockets CooperativePathPlanningofUnmanned Tsourdosetal. November2010 AerialVehicles PrinciplesofFlightforPilots Swatton October2010 AirTravelandHealth:ASystems Seabridgeetal. September2010 Perspective DesignandAnalysisofComposite Kassapoglou September2010 Structures:Withapplicationstoaerospace Structures UnmannedAircraftSystems:UAVS Austin April2010 Design,DevelopmentandDeployment IntroductiontoAntennaPlacement Macnamara April2010 &Installations PrinciplesofFlightSimulation Allerton October2009 AircraftFuelSystems Langtonetal. May2009 TheGlobalAirlineIndustry Belobaba April2009 ComputationalModellingandSimulationof Diston April2009 AircraftandtheEnvironment: Volume1-PlatformKinematicsand SyntheticEnvironment HandbookofSpaceTechnology Ley,WittmannandHallmann April2009 AircraftPerformanceTheoryand Swatton August2008 PracticeforPilots SurrogateModellinginEngineering Forrester,Sobesterand August2008 Design:APracticalGuide Keane AircraftSystems,3rdEdition MoirandSeabridge March2008 IntroductiontoAircraftAeroelasticity WrightandCooper December2007 AndLoads StabilityandControlofAircraftSystems Langton September2006 MilitaryAvionicsSystems MoirandSeabridge February2006 DesignandDevelopmentofAircraft MoirandSeabridge June2004 Systems AircraftLoadingandStructuralLayout Howe May2004 AircraftDisplaySystems Jukes December2003 CivilAvionicsSystems MoirandSeabridge December2002 THEORY OF LIFT INTRODUCTORY COMPUTATIONAL AERODYNAMICS IN MATLAB®/OCTAVE G.D.McBain, SchoolofAerospace,Mechanical,&MechatronicEngineering TheUniversityofSydney,Australia Thiseditionfirstpublished2012 ©2012,JohnWiley&Sons,Ltd Registeredoffice JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UnitedKingdom Fordetailsofourglobaleditorialoffices,forcustomerservicesandforinformationabouthowtoapplyforpermissionto reusethecopyrightmaterialinthisbookpleaseseeourwebsiteatwww.wiley.com. TherightoftheauthortobeidentifiedastheauthorofthisworkhasbeenassertedinaccordancewiththeCopyright, DesignsandPatentsAct1988. Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmitted,inanyformor byanymeans,electronic,mechanical,photocopying,recordingorotherwise,exceptaspermittedbytheUKCopyright, DesignsandPatentsAct1988,withoutthepriorpermissionofthepublisher. Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprintmaynotbeavailablein electronicbooks. Designationsusedbycompaniestodistinguishtheirproductsareoftenclaimedastrademarks.Allbrandnamesandproduct namesusedinthisbookaretradenames,servicemarks,trademarksorregisteredtrademarksoftheirrespectiveowners.The publisherisnotassociatedwithanyproductorvendormentionedinthisbook.Thispublicationisdesignedtoprovide accurateandauthoritativeinformationinregardtothesubjectmattercovered.Itissoldontheunderstandingthatthe publisherisnotengagedinrenderingprofessionalservices.Ifprofessionaladviceorotherexpertassistanceisrequired,the servicesofacompetentprofessionalshouldbesought. MATLAB®isatrademarkofTheMathWorks,Inc.andisusedwithpermission.TheMathWorksdoesnotwarrant theaccuracyofthetextorexercisesinthisbook.Thisbook’suseordiscussionofMATLAB®softwareorrelated productsdoesnotconstituteendorsementorsponsorshipbyTheMathWorksofaparticularpedagogicalapproachor particularuseoftheMATLAB®software. LibraryofCongressCataloging-in-PublicationData McBain,G.D.(GeordieG.) Theoryoflift:introductorycomputationalaerodynamicswithMATLAB®/ OCTAVE/G.D.McBain. p.cm. Includesbibliographicalreferencesandindex. ISBN978-1-119-95228-2(hardback) 1. Lift(Aerodynamics)–Mathematicalmodels. 2. Aerodynamics–Data processing. 3. MATLAB. I. Title. TL574.L5M332012 629.132(cid:1)33028553–dc23 2012004735 AcataloguerecordforthisbookisavailablefromtheBritishLibrary. PrintISBN:9781119952282 Setin10/12pt,TimesRomanbyThomsonDigital,Noida,India InmemoryofDrJonathanHarris Contents Preface xvii SeriesPreface xxiii PARTONE PLANEIDEALAERODYNAMICS 1 PreliminaryNotions 3 1.1 AerodynamicForceandMoment 3 1.1.1 MotionoftheFrameofReference 3 1.1.2 OrientationoftheSystemofCoordinates 4 1.1.3 ComponentsoftheAerodynamicForce 4 1.1.4 FormulationoftheAerodynamicProblem 4 1.2 AircraftGeometry 5 1.2.1 WingSectionGeometry 6 1.2.2 WingGeometry 7 1.3 Velocity 8 1.4 PropertiesofAir 8 1.4.1 EquationofState:CompressibilityandtheSpeedofSound 8 1.4.2 Rheology:Viscosity 10 1.4.3 TheInternationalStandardAtmosphere 12 1.4.4 ComputingAirProperties 12 1.5 DimensionalTheory 13 1.5.1 Alternativemethods 16 1.5.2 Example:UsingOctavetoSolveaLinearSystem 16 1.6 Example:NACAReportNo.502 18 1.7 Exercises 19 1.8 FurtherReading 22 References 22 2 PlaneIdealFlow 25 2.1 MaterialProperties:ThePerfectFluid 25 2.2 ConservationofMass 26 2.2.1 GoverningEquations:ConservationLaws 26 2.3 TheContinuityEquation 26 2.4 Mechanics:TheEulerEquations 27 2.4.1 RateofChangeofMomentum 27 viii Contents 2.4.2 ForcesActingonaFluidParticle 28 2.4.3 TheEulerEquations 29 2.4.4 AccountingforConservativeExternalForces 29 2.5 ConsequencesoftheGoverningEquations 30 2.5.1 TheAerodynamicForce 30 2.5.2 Bernoulli’sEquation 33 2.5.3 Circulation,Vorticity,andIrrotationalFlow 33 2.5.4 PlaneIdealFlows 35 2.6 TheComplexVelocity 35 2.6.1 ReviewofComplexVariables 35 2.6.2 AnalyticFunctionsandPlaneIdealFlow 38 2.6.3 Example:thePolarAngleIsNowhereAnalytic 40 2.7 TheComplexPotential 41 2.8 Exercises 42 2.9 FurtherReading 44 References 45 3 CirculationandLift 47 3.1 Powersofz 47 3.1.1 DivergenceandVorticityinPolarCoordinates 48 3.1.2 ComplexPotentials 48 3.1.3 DrawingComplexVelocityFieldswithOctave 49 3.1.4 Example:k =1,CornerFlow 50 3.1.5 Example:k =0,UniformStream 51 3.1.6 Example:k =−1,Source 51 3.1.7 Example:k =−2,Doublet 52 3.2 MultiplicationbyaComplexConstant 53 3.2.1 Example:w=const.,UniformStreamwithArbitraryDirection 53 3.2.2 Example:w=i/z,Vortex 54 3.2.3 Example:PolarComponents 54 3.3 LinearCombinationsofComplexVelocities 54 3.3.1 Example:CircularObstacleinaStream 54 3.4 TransformingtheWholeVelocityField 56 3.4.1 TranslatingtheWholeVelocityField 56 3.4.2 Example:DoubletastheSumofaSourceandSink 56 3.4.3 RotatingtheWholeVelocityField 56 3.5 CirculationandOutflow 57 3.5.1 Curve-integralsinPlaneIdealFlow 57 3.5.2 Example:NumericalLine-integralsforCirculationandOutflow 58 3.5.3 ClosedCircuits 59 3.5.4 Example:PowersofzandCirclesaroundtheOrigin 60 3.6 MoreontheScalarPotentialandStreamFunction 61 3.6.1 TheScalarPotentialandIrrotationalFlow 61 3.6.2 TheStreamFunctionandDivergence-freeFlow 62 Contents ix 3.7 Lift 62 3.7.1 Blasius’sTheorem 62 3.7.2 TheKutta–JoukowskyTheorem 63 3.8 Exercises 64 3.9 FurtherReading 65 References 66 4 ConformalMapping 67 4.1 CompositionofAnalyticFunctions 67 4.2 MappingwithPowersofζ 68 4.2.1 Example:SquareMapping 68 4.2.2 ConformingMappingbyContouringtheStreamFunction 69 4.2.3 Example:Two-thirdsPowerMapping 69 4.2.4 BranchCuts 70 4.2.5 OtherPowers 71 4.3 Joukowsky’sTransformation 71 4.3.1 UnitCirclefromaStraightLineSegment 71 4.3.2 UniformFlowandFlowoveraCircle 72 4.3.3 ThinFlatPlateatNonzeroIncidence 73 4.3.4 FlowovertheThinFlatPlatewithCirculation 74 4.3.5 JoukowskyAerofoils 75 4.4 Exercises 75 4.5 FurtherReading 78 References 78 5 FlatPlateAerodynamics 79 5.1 PlaneIdealFlowoveraThinFlatPlate 79 5.1.1 StagnationPoints 80 5.1.2 TheKutta–JoukowskyCondition 80 5.1.3 LiftonaThinFlatPlate 81 5.1.4 SurfaceSpeedDistribution 82 5.1.5 PressureDistribution 83 5.1.6 DistributionofCirculation 84 5.1.7 ThinFlatPlateasVortexSheet 85 5.2 ApplicationofThinAerofoilTheorytotheFlatPlate 87 5.2.1 ThinAerofoilTheory 87 5.2.2 VortexSheetalongtheChord 87 5.2.3 ChangingtheVariableofIntegration 88 5.2.4 Glauert’sIntegral 88 5.2.5 TheKutta–JoukowskyCondition 89 5.2.6 CirculationandLift 89 5.3 AerodynamicMoment 89 5.3.1 CentreofPressureandAerodynamicCentre 90 5.4 Exercises 90 5.5 FurtherReading 91 References 91 x Contents 6 ThinWingSections 93 6.1 ThinAerofoilAnalysis 93 6.1.1 VortexSheetalongtheCamberLine 93 6.1.2 TheBoundaryCondition 93 6.1.3 Linearization 94 6.1.4 Glauert’sTransformation 95 6.1.5 Glauert’sExpansion 95 6.1.6 FourierCosineDecompositionoftheCamberLineSlope 97 6.2 ThinAerofoilAerodynamics 98 6.2.1 CirculationandLift 98 6.2.2 PitchingMomentabouttheLeadingEdge 99 6.2.3 AerodynamicCentre 100 6.2.4 Summary 101 6.3 AnalyticalEvaluationofThinAerofoilIntegrals 101 6.3.1 Example:theNACAFour-digitWingSections 104 6.4 NumericalThinAerofoilTheory 105 6.5 Exercises 109 6.6 FurtherReading 109 References 109 7 LumpedVortexElements 111 7.1 TheThinFlatPlateatArbitraryIncidence,Again 111 7.1.1 SingleVortex 111 7.1.2 TheCollocationPoint 111 7.1.3 LumpedVortexModeloftheThinFlatPlate 112 7.2 UsingTwoLumpedVorticesalongtheChord 114 7.2.1 Postprocessing 116 7.3 GeneralizationtoMultipleLumpedVortexPanels 117 7.3.1 Postprocessing 117 7.4 GeneralConsiderationsonDiscreteSingularityMethods 117 7.5 LumpedVortexElementsforThinAerofoils 119 7.5.1 PanelChainsforCamberLines 119 7.5.2 ImplementationinOctave 121 7.5.3 ComparisonwithThinAerofoilTheory 122 7.6 DisconnectedAerofoils 123 7.6.1 OtherApplications 124 7.7 Exercises 125 7.8 FurtherReading 125 References 126 8 PanelMethodsforPlaneFlow 127 8.1 DevelopmentoftheCUSSSPProgram 127 8.1.1 TheSingularityElements 127 8.1.2 DiscretizingtheGeometry 129 8.1.3 TheInfluenceMatrix 131 8.1.4 TheRight-handSide 132
Description: