ebook img

Theory of Distributions PDF

217 Pages·2015·0.879 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Theory of Distributions

Svetlin G. Georgiev Theory of Distributions Theory of Distributions Svetlin G. Georgiev Theory of Distributions 123 SvetlinG.Georgiev DepartmentofDifferentialEquations UniversityofSofia“St.KlimentOhridski” Sofia,Bulgaria ISBN978-3-319-19526-1 ISBN978-3-319-19527-8 (eBook) DOI10.1007/978-3-319-19527-8 LibraryofCongressControlNumber:2015944329 SpringerChamHeidelbergNewYorkDordrechtLondon ©SpringerInternationalPublishingSwitzerland2015 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper Springer International Publishing AG Switzerland is part of Springer Science+Business Media (www.springer.com) Preface The theoryof partialdifferentialequationsis withouta doubtoneof the branches ofanalysisinwhichideasandmethodsofdifferentfieldsofmathematicsmanifest themselves and are interlaced—from functional and harmonic analysis to differ- ential geometry and topology. Because of that, the study of this topic represents a constant endeavour and requires undertaking several challenges. The main aim of this bookis to explainmanyof the fundamentalideasunderlyingthe theoryof distributions. Thisbookconsistsoftenchapters.Chapter1dealswiththewell-knownclassical theoryregardingthespaceC1,theSchwartzspaceandtheconvolutionoflocally integrable functions. It may also serve as an introduction to typical questions related to cones in Rn. Chapter 2 collects the definitions of distributions, their order,sequences,supportandsingularsupport,andmultiplicationbyC1functions. In Chaps.3 and 4 we introduce differentiation and homogeneous distributions. The notion of direct multiplication of distributions is developed in Chap.5. The followingtwochapters,6and7,dealwithspecificproblemsaboutconvolutionsand tempereddistributions.InChaps.8and9wecollectedbasicmaterialandproblems regarding integral transforms. Sobolev spaces are discussed in Chap.10, the final chapter. This volume is aimed at graduate students and mathematicians seeking an accessible introduction to some aspects of the theory of distributions, and is well suitedforaone-semesterlecturecourse. ItisapleasuretoacknowledgethegreathelpIreceivedfromProfessorMokhtar Kirane, University of La Rochelle, La Rochelle, France, who made valuable suggestionsthathavebeenincorporatedinthetext. Iexpressmygratitudeinadvancetoanybodywhowillinformmeaboutmistakes, misprints,orexpresscriticismorothercomments,bywritingtothee-mailaddresses [email protected],[email protected]. Paris,France SvetlinG.Georgiev January2015 v Contents 1 Introduction ................................................................ 1 1.1 TheSpacesC1andS .............................................. 1 0 1.2 ConvolutionofLocallyIntegrableFunctions....................... 5 1.3 ConesinRn........................................................... 8 1.4 Exercises.............................................................. 10 2 GeneralitiesonDistributions ............................................. 27 2.1 Definition............................................................. 27 2.2 OrderofaDistribution............................................... 31 2.3 Sequences............................................................. 32 2.4 Support................................................................ 34 2.5 SingularSupport ..................................................... 36 2.6 Measures.............................................................. 38 2.7 MultiplyingDistributionsbyC1 Functions........................ 39 2.8 Exercises.............................................................. 40 3 Differentiation .............................................................. 65 3.1 Derivatives............................................................ 65 3.2 ThePrimitiveofaDistribution ...................................... 68 3.3 DoubleLayersonSurfaces .......................................... 71 3.4 Exercises.............................................................. 71 4 HomogeneousDistributions .............................................. 87 4.1 DefinitionandProperties............................................. 87 4.2 Exercises.............................................................. 88 5 DirectProductofDistributions ........................................... 99 5.1 Definition............................................................. 99 5.2 Properties............................................................. 101 5.3 Exercises.............................................................. 104 vii viii Contents 6 Convolutions ................................................................ 109 6.1 Definition............................................................. 109 6.2 Properties............................................................. 111 6.3 Existence.............................................................. 113 6.4 TheConvolutionAlgebrasD0.(cid:2)C/andD0.(cid:2)/.................... 115 6.5 RegularizationofDistributions...................................... 116 6.6 FractionalDifferentiationandIntegration........................... 117 6.7 Exercises.............................................................. 121 7 TemperedDistributions ................................................... 151 7.1 Definition............................................................. 151 7.2 DirectProduct........................................................ 153 7.3 Convolution........................................................... 154 7.4 Exercises.............................................................. 156 8 IntegralTransforms ....................................................... 161 8.1 FourierTransforminS.Rn/ ........................................ 161 8.2 FourierTransforminS0.Rn/........................................ 162 8.3 PropertiesoftheFourierTransforminS0.Rn/..................... 164 8.4 FourierTransformofDistributionswithCompactSupport........ 165 8.5 FourierTransformofConvolutions ................................. 166 8.6 LaplaceTransform ................................................... 167 8.6.1 Definition..................................................... 167 8.6.2 Properties..................................................... 168 8.7 Exercises.............................................................. 170 9 FundamentalSolutions .................................................... 179 9.1 DefinitionandProperties............................................. 179 9.2 Exercises.............................................................. 182 10 SobolevSpaces ............................................................. 187 10.1 Definitions............................................................ 187 10.2 ElementaryProperties................................................ 188 10.3 ApproximationbySmoothFunctions............................... 191 10.4 Extensions............................................................ 196 10.5 Traces................................................................. 199 10.6 SobolevInequalities.................................................. 201 10.7 TheSpaceH(cid:2)s ....................................................... 210 10.8 Exercises.............................................................. 211 References......................................................................... 215 Index............................................................................... 217 Chapter 1 Introduction 1.1 TheSpacesC1 and S 0 LetX (cid:2)Rnbeanopenset. Definition1.1 We call space of basic functions the space C1.X/ of smooth 0 functionswithcompactsupportdefinedonX. With Nn [f0g we denote the space of multi-indices ˛ D .˛1;˛2;:::;˛n/, ˛k 2 N[f0g, k D 1;2;:::;n. Set D D .D1;D2;:::;Dn/, Dk D @@xk, k D 1;2;:::;n, D˛ D @˛1@@˛j2˛:j::@˛n.IfK (cid:2) X isacompactsetweshallwriteK (cid:2)(cid:2)X.Thefollowing x1 x2 xn conventions will also be used throughout the book: U.x0;R/ is the open ball of radiusRwithcentreatthepointx0,S.x0;R/ D @U.x0;R/isthesphereofradiusR withcentreatx0,andUR DU.0;R/,SR DS.0;R/. IfAandBaresetsinRn,bydist.A;B/weshalldenotethedistancebetweenthesets AandB,thatis dist.A;B/Dinfx2A;y2Bjx(cid:3)yj: WeshalluseA(cid:3) todenotethe(cid:3)-neighbourhoodofasetA,i.e.A(cid:3) DACU(cid:3).IfAis anopensetA(cid:3) willdesignatethesetofpointsinAthataremorethan(cid:3) awayfrom theboundary@A,i.e.A(cid:3) DfxWx2A;dist.x;@A/>(cid:3)g. WeuseintAtodenotethesetofinteriorpointsofthesetA. Definition1.2 ThesetAiscalledconvexifforanypointsxandyinAthesegment (cid:4)xC.1(cid:3)(cid:4)/y; (cid:4)2Œ0;1(cid:5); liesentirelyinA. WewillwritechAtodenotetheconvexhullofasetA. ©SpringerInternationalPublishingSwitzerland2015 1 S.G.Georgiev,TheoryofDistributions,DOI10.1007/978-3-319-19527-8_1

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.