ebook img

Theory and Statistical Applications of Stochastic Processes PDF

388 Pages·2018·3.139 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Theory and Statistical Applications of Stochastic Processes

Theory and Statistical Applications of Stochastic Processes Series Editor Nikolaos Limnios Theory and Statistical Applications of Stochastic Processes Yuliya Mishura Georgiy Shevchenko First published 2017 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc. Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address: ISTE Ltd John Wiley & Sons, Inc. 27-37 St George’s Road 111 River Street London SW19 4EU Hoboken, NJ 07030 UK USA www.iste.co.uk www.wiley.com © ISTE Ltd 2017 The rights of Yuliya Mishura and Georgiy Shevchenko to be identified as the authors of this work have been asserted by them in accordance with the Copyright, Designs and Patents Act 1988. Library of Congress Control Number: 2017953309 British Library Cataloguing-in-Publication Data A CIP record for this book is available from the British Library ISBN 978-1-78630-050-8 Contents Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii Part1.TheoryofStochasticProcesses . . . . . . . . . . . . . . . . . . . 1 Chapter1.StochasticProcesses.GeneralProperties. Trajectories,Finite-dimensionalDistributions . . . . . . . . . . . . . . 3 1.1.Definitionofastochasticprocess . . . . . . . . . . . . . . . . . . . . . 3 1.2.Trajectoriesofastochasticprocess.Someexamples ofstochasticprocesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.1.Definitionoftrajectoryandsomeexamples. . . . . . . . . . . . . . 5 1.2.2.Trajectoryofastochasticprocessas arandomelement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3.Finite-dimensionaldistributionsofstochastic processes: consistencyconditions . . . . . . . . . . . . . . . . . . . . . . . . 10 1.3.1.Definitionandpropertiesoffinite-dimensional distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.3.2.Consistencyconditions . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.3.3.Cylindersetsandgeneratedσ-algebra. . . . . . . . . . . . . . . . . 13 1.3.4.Kolmogorovtheoremontheconstructionofastochastic processbythefamilyofprobabilitydistributions . . . . . . . . . . . . . . 15 1.4.Propertiesofσ-algebrageneratedbycylindersets. Thenotionofσ-algebrageneratedbyastochasticprocess . . . . . . . . . . 19 vi TheoryandStatisticalApplicationsofStochasticProcesses Chapter2.StochasticProcesseswithIndependent Increments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.1.Existenceofprocesseswithindependentincrements intermsofincrementalcharacteristicfunctions . . . . . . . . . . . . . . . . 21 2.2.Wienerprocess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.2.1.One-dimensionalWienerprocess . . . . . . . . . . . . . . . . . . . 24 2.2.2.Independentstochasticprocesses.Multidimensional Wienerprocess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3.Poissonprocess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.3.1.Poissonprocessdefinedviatheexistencetheorem . . . . . . . . . . 27 2.3.2.Poissonprocessdefinedviathedistributions oftheincrements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.3.3.Poissonprocessasarenewalprocess . . . . . . . . . . . . . . . . . 30 2.4.CompoundPoissonprocess. . . . . . . . . . . . . . . . . . . . . . . . . 33 2.5.Lévyprocesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.5.1.Wienerprocesswithadrift . . . . . . . . . . . . . . . . . . . . . . . 36 2.5.2.CompoundPoissonprocessasaLévyprocess . . . . . . . . . . . . 36 2.5.3.SumofaWienerprocesswithadriftand aPoissonprocess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.5.4.Gammaprocess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.5.5.StableLévymotion . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.5.6.StableLévysubordinatorwithstability parameterα∈(0,1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Chapter3.GaussianProcesses.IntegrationwithRespectto GaussianProcesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.1.Gaussianvectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.2.TheoremofGaussianrepresentation(theoremon normalcorrelation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.3.Gaussianprocesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.4.ExamplesofGaussianprocesses . . . . . . . . . . . . . . . . . . . . . . 46 3.4.1.WienerprocessasanexampleofaGaussianprocess . . . . . . . . 46 3.4.2.FractionalBrownianmotion . . . . . . . . . . . . . . . . . . . . . . 48 3.4.3.Sub-fractionalandbi-fractionalBrownianmotion . . . . . . . . . . 50 3.4.4.Brownianbridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.4.5.Ornstein–Uhlenbeckprocess . . . . . . . . . . . . . . . . . . . . . . 51 3.5.Integrationofnon-randomfunctionswithrespect toGaussianprocesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.5.1.Generalapproach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.5.2.Integrationofnon-randomfunctionswithrespect totheWienerprocess. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.5.3.Integrationw.r.t.thefractionalBrownianmotion. . . . . . . . . . . 57 Contents vii 3.6.Two-sidedWienerprocessandfractionalBrownian motion: Mandelbrot–vanNessrepresentationoffractional Brownianmotion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.7.RepresentationoffractionalBrownianmotionasthe Wienerintegralonthecompactintegral . . . . . . . . . . . . . . . . . . . . 63 Chapter4.Construction,PropertiesandSomeFunctionalsofthe WienerProcessandFractionalBrownianMotion . . . . . . . . . . . . 67 4.1.ConstructionofaWienerprocessontheinterval[0,1] . . . . . . . . . 67 4.2.ConstructionofaWienerprocessonR+ . . . . . . . . . . . . . . . . . 72 4.3.Nowheredifferentiabilityofthetrajectoriesof aWienerprocess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.4.PowervariationoftheWienerprocessandofthe fractionalBrownianmotion . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.4.1.Ergodictheoremforpowervariations . . . . . . . . . . . . . . . . . 77 4.5.Self-similarstochasticprocesses . . . . . . . . . . . . . . . . . . . . . . 79 4.5.1.Definitionofself-similarityandsomeexamples . . . . . . . . . . . 79 4.5.2.Powervariationsofself-similarprocesses onfiniteintervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Chapter5.MartingalesandRelatedProcesses . . . . . . . . . . . . . . 85 5.1.Notionofstochasticbasiswithfiltration . . . . . . . . . . . . . . . . . 85 5.2.Notionof(sub-,super-)martingale: elementary properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 5.3.Examplesof(sub-,super-)martingales . . . . . . . . . . . . . . . . . . 87 5.4.Markovmomentsandstoppingtimes . . . . . . . . . . . . . . . . . . . 90 5.5.Martingalesandrelatedprocesseswithdiscretetime . . . . . . . . . . 96 5.5.1.Upcrossingsoftheintervalandexistence ofthelimitofsubmartingale. . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.5.2.Examplesofmartingaleshavingalimitandof uniformlyandnon-uniformlyintegrablemartingales . . . . . . . . . . . . 102 5.5.3.Lévyconvergencetheorem . . . . . . . . . . . . . . . . . . . . . . . 104 5.5.4.Optionalstopping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 5.5.5.Maximalinequalitiesfor(sub-,super-) martingales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 5.5.6.Doobdecompositionfortheintegrableprocesses withdiscretetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 5.5.7.Quadraticvariationandquadraticcharacteristics: Burkholder–Davis–Gundyinequalities . . . . . . . . . . . . . . . . . . . . 113 5.5.8.ChangeofprobabilitymeasureandGirsanov theoremfordiscrete-timeprocesses. . . . . . . . . . . . . . . . . . . . . . 116 5.5.9.Stronglawoflargenumbersformartingales withdiscretetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 viii TheoryandStatisticalApplicationsofStochasticProcesses 5.6.Lévymartingalestopped . . . . . . . . . . . . . . . . . . . . . . . . . . 126 5.7.Martingaleswithcontinuoustime . . . . . . . . . . . . . . . . . . . . . 127 Chapter6.RegularityofTrajectoriesofStochastic Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 6.1.ContinuityinprobabilityandinL2(Ω,F,P) . . . . . . . . . . . . . . . 131 6.2.Modificationofstochasticprocesses: stochastically equivalentandindistinguishableprocesses. . . . . . . . . . . . . . . . . . . 133 6.3.Separablestochasticprocesses: existenceof separablemodification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 6.4.ConditionsofD-regularityandabsenceofthe discontinuitiesofthesecondkindforstochasticprocesses . . . . . . . . . . 138 6.4.1.SkorokhodconditionsofD-regularityinterms ofthree-dimensionaldistributions. . . . . . . . . . . . . . . . . . . . . . . 138 6.4.2.Conditionsofabsenceofthediscontinuities ofthesecondkindformulatedintermsofconditional probabilitiesoflargeincrements . . . . . . . . . . . . . . . . . . . . . . . 144 6.5.Conditionsofcontinuityoftrajectoriesof stochasticprocesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 6.5.1.Kolmogorovconditionsofcontinuityinterms oftwo-dimensionaldistributions . . . . . . . . . . . . . . . . . . . . . . . 148 6.5.2.Höldercontinuityofstochasticprocesses: asufficientcondition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 6.5.3.Conditionsofcontinuityintermsof conditionalprobabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 Chapter7.MarkovandDiffusionProcesses . . . . . . . . . . . . . . . . 157 7.1.Markovproperty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 7.2.ExamplesofMarkovprocesses. . . . . . . . . . . . . . . . . . . . . . . 163 7.2.1.Discrete-timeMarkovchain . . . . . . . . . . . . . . . . . . . . . . 163 7.2.2.Continuous-timeMarkovchain . . . . . . . . . . . . . . . . . . . . 165 7.2.3.Processwithindependentincrements . . . . . . . . . . . . . . . . . 168 7.3.Semigroupresolventoperatorandgeneratorrelated tothehomogeneousMarkovprocess . . . . . . . . . . . . . . . . . . . . . . 168 7.3.1.SemigrouprelatedtoMarkovprocess . . . . . . . . . . . . . . . . . 168 7.3.2.Resolventoperatorandresolventequation . . . . . . . . . . . . . . 169 7.3.3.Generatorofasemigroup . . . . . . . . . . . . . . . . . . . . . . . . 171 7.4.Definitionandbasicpropertiesofdiffusionprocess . . . . . . . . . . . 175 7.5.Homogeneousdiffusionprocess.Wienerprocess asadiffusionprocess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 7.6.Kolmogorovequationsfordiffusions . . . . . . . . . . . . . . . . . . . 181 Contents ix Chapter8.StochasticIntegration . . . . . . . . . . . . . . . . . . . . . . . 187 8.1.Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 8.2.DefinitionofItôintegral . . . . . . . . . . . . . . . . . . . . . . . . . . 189 8.2.1.ItôintegralofWienerprocess . . . . . . . . . . . . . . . . . . . . . 195 8.3.ContinuityofItôintegral . . . . . . . . . . . . . . . . . . . . . . . . . . 197 8.4.ExtendedItôintegral . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 8.5.ItôprocessesandItôformula . . . . . . . . . . . . . . . . . . . . . . . . 203 8.6.Multivariatestochasticcalculus . . . . . . . . . . . . . . . . . . . . . . 212 8.7.MaximalinequalitiesforItômartingales . . . . . . . . . . . . . . . . . 215 8.7.1.StronglawoflargenumbersforItô localmartingales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 8.8.LévymartingalecharacterizationofWienerprocess . . . . . . . . . . . 220 8.9.Girsanovtheorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 8.10.Itôrepresentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228 Chapter9.StochasticDifferentialEquations . . . . . . . . . . . . . . . 233 9.1.Definition,solvabilityconditions,examples . . . . . . . . . . . . . . . 233 9.1.1.Existenceanduniquenessofsolution . . . . . . . . . . . . . . . . . 234 9.1.2.Somespecialstochasticdifferentialequations . . . . . . . . . . . . 238 9.2.Propertiesofsolutionstostochasticdifferential equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 9.3.Continuousdependenceofsolutionsoncoefficients . . . . . . . . . . . 245 9.4.Weaksolutionstostochasticdifferentialequations. . . . . . . . . . . . 247 9.5.SolutionstoSDEsasdiffusionprocesses . . . . . . . . . . . . . . . . . 249 9.6.Viability,comparisonandpositivityofsolutionsto stochasticdifferentialequations . . . . . . . . . . . . . . . . . . . . . . . . . 252 9.6.1.Comparisontheoremforone-dimensionalprojectionsof stochasticdifferentialequations . . . . . . . . . . . . . . . . . . . . . . . . 257 9.6.2.Non-negativityofsolutionstostochastic differentialequations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 9.7.Feynman–Kacformula . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 9.8.Diffusionmodeloffinancialmarkets . . . . . . . . . . . . . . . . . . . 260 9.8.1.Admissibleportfolios,arbitrageandequivalent martingalemeasure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 9.8.2.Contingentclaims,pricingandhedging . . . . . . . . . . . . . . . . 266 Part2.StatisticsofStochasticProcesses . . . . . . . . . . . . . . . . . 271 Chapter10.ParameterEstimation . . . . . . . . . . . . . . . . . . . . . . 273 10.1.Driftanddiffusionparameterestimationinthelinear regressionmodelwithdiscretetime. . . . . . . . . . . . . . . . . . . . . . . 273 10.1.1.Driftestimationinthelinearregressionmodel withdiscretetimeinthecasewhentheinitialvalueisknown . . . . . . . 274 x TheoryandStatisticalApplicationsofStochasticProcesses 10.1.2.Driftestimationinthecasewhentheinitialvalue isunknown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 10.2.Estimationofthediffusioncoefficientinalinear regressionmodelwithdiscretetime. . . . . . . . . . . . . . . . . . . . . . . 277 10.3.Driftanddiffusionparameterestimationinthelinear modelwithcontinuoustimeandtheWienernoise . . . . . . . . . . . . . . 278 10.3.1.Driftparameterestimation . . . . . . . . . . . . . . . . . . . . . . 279 10.3.2.Diffusionparameterestimation . . . . . . . . . . . . . . . . . . . 280 10.4.Parameterestimationinlinearmodelswithfractional Brownianmotion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 10.4.1.EstimationofHurstindex . . . . . . . . . . . . . . . . . . . . . . . 281 10.4.2.Estimationofthediffusionparameter . . . . . . . . . . . . . . . . 283 10.5.Driftparameterestimation. . . . . . . . . . . . . . . . . . . . . . . . . 284 10.6.Driftparameterestimationinthesimplest autoregressivemodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 10.7.Driftparametersestimationinthehomogeneous diffusionmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 Chapter11.FilteringProblem.Kalman-BucyFilter . . . . . . . . . . . 293 11.1.Generalsetting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293 11.2.Auxiliarypropertiesofthenon-observableprocess . . . . . . . . . . . 294 11.3.Whatisanoptimalfilter . . . . . . . . . . . . . . . . . . . . . . . . . . 295 11.4.Representationofanoptimalfilterviaanintegral equationwithrespecttoanobservableprocess . . . . . . . . . . . . . . . . 296 11.5.IntegralWiener-Hopfequation . . . . . . . . . . . . . . . . . . . . . . 299 Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311 Appendix1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313 Appendix2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.