Theory and Computation of Tensors Theory and Computation of Tensors Multi-Dimensional Arrays WEIYANG DING YIMIN WEI AMSTERDAM (cid:129) BOSTON (cid:129) HEIDELBERG (cid:129) LONDON NEW YORK (cid:129) OXFORD (cid:129) PARIS (cid:129) SAN DIEGO SAN FRANCISCO (cid:129) SINGAPORE (cid:129) SYDNEY (cid:129) TOKYO Academic Press is an imprint of Elsevier AcademicPressisanimprintofElsevier 125LondonWall,LondonEC2Y5AS,UK 525BStreet,Suite1800,SanDiego,CA92101-4495,USA 50HampshireStreet,5thFloor,Cambridge,MA02139,USA TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UK Copyright©2016ElsevierLtd.Allrightsreserved. Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronic ormechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem, withoutpermissioninwritingfromthepublisher.Detailsonhowtoseekpermission,further informationaboutthePublisher’spermissionspoliciesandourarrangementswithorganizationssuchas theCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions. Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe Publisher(otherthanasmaybenotedherein). Notices Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperience broadenourunderstanding,changesinresearchmethods,professionalpractices,ormedicaltreatment maybecomenecessary. Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluating andusinganyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuch informationormethodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers,including partiesforwhomtheyhaveaprofessionalresponsibility. Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assume anyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability, negligenceorotherwise,orfromanyuseoroperationofanymethods,products,instructions,orideas containedinthematerialherein. LibraryofCongressCataloging-in-PublicationData AcatalogrecordforthisbookisavailablefromtheLibraryofCongress BritishLibraryCataloguing-in-PublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary ISBN978-0-12-803953-3(print) ISBN978-0-12-803980-9(online) ForinformationonallAcademicPresspublications visitourwebsiteathttps://www.elsevier.com/ Publisher:GlynJones AcquisitionEditor:GlynJones EditorialProjectManager:Anna Valutkevich ProductionProjectManager:DebasishGhosh Designer:Nikki Levy TypesetbySPiGlobal,India Contents Preface v I GenerTahle ory 1 1 Introductiaonnd Preliminaries 3 1.1 WhatA rcT ensor.s ? 3 1.2 BasiOcp erations 6 1.3 TensoDre compositions. 8 1.4 TensoEri genvalPureo blems !O 2 GeneralizTeedn sorE igenvaluPer oblems 11 2.1 A UnifiFerda mework. 11 2.2 BasiDce finitions 13 2.3 SevenBtlr lsPirco preties 14 2.3.1N umbero fE igel1va.l ues 14 2.3.2S pectrRa.la di.u s 15 2.3.3D iagonalizTaebnlseo Pra irs 15 2.3.4G crshgorni Circle Theorem 16 2.3.5B ackwarEdr roArn alysis 19 2.4 ReaTle nsoPra i.r s 20 2.4.1T heC rawforNdu mber 21 2.4.2S ymmetric-DefTiennistoeP rai sr 22 2.5 Sign-ComplSepxe ctrRaald ius 26 2.5.1D efinitions 26 2.5.2C ollaWtize-lallFdotr mula 27 2.5.3P ropertfioersS inglTee nsors 29 2.5.4T heC omponentwiDsies tantcoeS ingula.r ity 31 2.5.5B auer-FiTkhee Ol'eul 33 2.6 An IllustrEaxtaimvpel e 34 II HankelT ensors 37 3 FastT ensor-VectPorro ducts 39 3.1 HankeTle nsors 39 3.2 Exponential Data Fit,ting 40 3.2.1T heO ne-Dimensional Case 40 3.2.2T hel\ lultidimensCiaoslel al 42 3.3 Anti-CircTuelnasnotr s 45 3.3.1D iagonalization 46 3.3.2S ingulVaari lles 47 viii CONTENTS 3.3.3B locTke llso.r s 49 3.4 FastH ankeTle nsor-VecPtroord uct 50 3.5 NumericEaxla mples 53 4 InheritanPcreo perties 59 4.1 InheritaPnrcoep erties 59 4.2 TheF irsltu hcl'itParnocpee rotfyH aukeTle nso.r s 61 4.2.1A COllvolutFioornm ula . 61 4.2.2L ower-OrdIemrp liHeisg her-Order 63 4.2.3S OS Dccomposit.oifoS ltlr onHga nkeTle nso.r s 65 11.3 The SecoInndh eritaPnrcoep erotfyH ankeTle nsors 66 4.3.1S tronHga nkeTle nsor.s . 66 4.3.2A GeneraVla ndermollDdecc ompositoifoH na nkei\ll atric6e8 s 4.3.3A n AugmcnteVda ndcnnonde DccompoosfiH tainokne l Tensors 71 4.3.4T he SeconIdn herit.aPnrcoep erot.fyH ankeTle nsors 75 4.4 TheT hirdI nheritanPcreo pertoyfH ankeTle nsors 77 III M-Tensors 79 5 Definitionasn d BasicP roperties 81 5.1P reliminaries 81 5.l.!N onnegatiTveen sor 81 5.1.2F romA tf-l\ftaotM l-'Tiexn sol' 82 5.2 SpeclrPRr]o perto.fiM e-sT enso.r s 83 5.3 Semi-Positivity 84 5.3.1D efinitions 84 5.3.2S emi-Positive Z-Tensol's 85 5.3.3P roooff T heorem5. 7 87 5.3.4G eneraMl- Tensors 89 5.4 l\lonotonicity 90 5.4.1D efiuitions 90 5.4.2P roperties 90 5.4.3A Count.eErx ample 93 5.4.4A Nontrivl\ilaoll lotZo-nTee nsor 93 5.5 An ExtensioofnM -Tensors 93 5.6 SummRtion 95 6 MultilineSayrs temsw ithM -Tensors 97 6.1 i\lotivat.ions 97 6.2 TrianguElqaura tio.n s 99 6.3 M-EquatioalnldsB eyond 102 6.3.1M -Equations 102 6.3.2N onpositive R.igShitd-eH and 104 6.3.3N onhomoegneouLse ft-HaSniedle 105 6.3.4A bsoluMt-eE quations 106 6.3.5B andedM -Equatio.n 107 6.4 Iterati\ilveet hofdosrM -Equatio.n s 108 6.4.1T he ClassiIctaelr ations 109 CONTENTS ix 6.4.T2h eN ewtoMne thofdo Sry mmetrMi-cE quiaot.lls 111 6.'1.N3u mericTaels ts 112 6.5 PerturbatAinoanl ysoifsM -Eql.lations ]]4 6.5,B]a ckwaErrrrlo.or fsT rianguMl-aErq uations 115 6.5.C2o nditiNounm bers 116 6.6 InverIstee ration 118 Bibliography 125 SubjecItn dex 135 Preface Thisbookisdevotedtothetheoryandcomputationoftensors,alsocalledhyper- matrices. Our investigation includes theories on generalized tensor eigenvalue problems and two kinds of structured tensors, Hankel tensors and M-tensors. Both theoretical analyses and computational aspects are discussed. We begin with the generalized tensor eigenvalue problems, which are re- garded as a unified framework of different kinds of tensor eigenvalue problems arising from applications. We focus on the perturbation theory and the error analysis of regular tensor pairs. Employing various techniques, we extend sev- eral classical results from matrices or matrix pairs to tensor pairs, such as the Gershgorin circle theorem, the Collatz-Wielandt formula, the Bauer-Fike the- orem, the Rayleigh-Ritz theorem, backward error analysis, the componentwise distance of a nonsingular tensor to singularity, etc. Inthesecondpart,wefocusonHankeltensors. Wefirstproposeafastalgo- rithmforHankeltensor-vectorproductsbyintroducingaspecialclassofHankel tensors that can be diagonalized by Fourier matrices, called anti-circulant ten- sors. ThenweobtainafastalgorithmforHankeltensor-vectorproductsbyem- beddingaHankeltensorintoalargeranti-circulanttensor. Thecomputational complexityisreducedfromO(nm)toO(m2nlogmn). Next,weinvestigatethe spectral inheritance properties of Hankel tensors by applying the convolution formulaofthefastalgorithmandanaugmentedVandermondedecompositionof strong Hankel tensors. We prove that if a lower-order Hankel tensor is positive semidefinite,thenahigher-orderHankeltensorwiththesamegeneratingvector has no negative H-eigenvalues, when (i) the lower order is 2, or (ii) the lower order is even and the higher order is its multiple. The third part is contributed to M-tensors. We attempt to extend the equivalentdefinitionsofnonsingularM-matrices,suchassemi-positivity,mono- tonicity, nonnegative inverse, etc., to the tensor case. Our results show that the semi-positivity is still an equivalent definition of nonsingular M-tensors, whilethemonotonicityisnot. Furthermore, thegeneralizationofthe“nonneg- ative inverse” property inspires the study of multilinear system of equations. We prove the existence and uniqueness of the positive solutions of nonsingular M-equations with positive right-hand sides, and also propose several iterative methods for computing the positive solutions. We would like to thank our collaborator Prof. Liqun Qi of the Hong Kong Polytechnic University, who leaded us to the research of tensor spectral theory and always encourages us to explore the topic. We would also like to thank Prof. Eric King-wah Chu of Monash University and Prof. Sanzheng Qiao of McMasterUniversity,whoreadthisbookcarefullyandprovidedfeedbackduring the writing process. This work was supported by the National Natural Science Foundation of China under Grant 11271084, School of Mathematical Sciences and Key Labo- ratory of Mathematics for Nonlinear Sciences, Fudan University. Chapter 1 Introduction and Preliminaries We first introduce the concepts and sources of tensors in this chapter. Several essentialandfrequentlyusedoperationsinvolvingtensorsarealsoincluded. Fur- thermore, two basic topics, tensor decompositions and tensor eigenvalue prob- lems, are briefly discussed at the end of this chapter. 1.1 What Are Tensors? The term tensor or hypermatrix in this book refers to a multiway array. The numberofthedimensionsofatensoriscalleditsorder,thatis,A=(a ) i1i2...im is an mth-order tensor. Particularly, a scalar is a 0th-order tensor, a vector is a 1st-order tensor, and a matrix is a 2nd-order tensor. As other mathematical concepts, tensor or hypermatrix is abstracted from real-world phenomena and other scientific theories. Where do the tensors arise? What kinds of properties do we care most? How many different types of tensors do we have? We will briefly answer these questions employing several illustrative examples in this section. Example 1.1. As we know, a table is one of the most common realizations of a matrix. We can also understand tensors or hypermatrices as complex tables with multivariables. For instance, if we record the scores of 4 students on 3 subjects for both the midterm and final exams, then we can design a 3rd-order tensor S of size 4×3×2 whose (i,j,k) entry s denotes the score of the i-th ijk student on the j-th subjects in the k-th exam. This representation is natural and easily understood, thus it is a convenient data structure for construction andquery. However,whenweneedtoprinttheinformationonapieceofpaper, the 3D structure is apparently not suitable for 2D visualization. Thus we need tounfoldthecubictensorintoamatrix. Thefollowingtwodifferentunfoldings of the same tensor both include all the information in the original complex table. We can see from the two tables that their entries are the same up to a permutation. Actually, there are many different ways to unfold a higher-order tensorintoamatrix,andthelinkagesbetweenthemarepermutationsofindices. (cid:84)(cid:104)(cid:101)(cid:111)(cid:114)(cid:121)(cid:32)(cid:97)(cid:110)(cid:100)(cid:32)(cid:67)(cid:111)(cid:109)(cid:112)(cid:117)(cid:116)(cid:97)(cid:116)(cid:105)(cid:111)(cid:110)(cid:32)(cid:111)(cid:102)(cid:32)(cid:84)(cid:101)(cid:110)(cid:115)(cid:111)(cid:114)(cid:115)(cid:46) 3 (cid:104)(cid:116)(cid:116)(cid:112)(cid:58)(cid:47)(cid:47)(cid:100)(cid:120)(cid:46)(cid:100)(cid:111)(cid:105)(cid:46)(cid:111)(cid:114)(cid:103)(cid:47)(cid:49)(cid:48)(cid:46)(cid:49)(cid:48)(cid:49)(cid:54)(cid:47)(cid:66)(cid:57)(cid:55)(cid:56)(cid:45)(cid:48)(cid:45)(cid:49)(cid:50)(cid:45)(cid:56)(cid:48)(cid:51)(cid:57)(cid:53)(cid:51)(cid:45)(cid:51)(cid:46)(cid:53)(cid:48)(cid:48)(cid:48)(cid:49)(cid:45)(cid:48) Copyright © (cid:50)(cid:48)(cid:49)(cid:54)(cid:32)(cid:69)(cid:108)(cid:115)(cid:101)(cid:118)(cid:105)(cid:101)(cid:114)(cid:32)(cid:76)(cid:116)(cid:100)(cid:46)(cid:32)(cid:65)(cid:108)(cid:108)(cid:32)(cid:114)(cid:105)(cid:103)(cid:104)(cid:116)(cid:115)(cid:32)(cid:114)(cid:101)(cid:115)(cid:101)(cid:114)(cid:118)(cid:101)(cid:100)(cid:46) 4 CHAPTER 1. INTRODUCTION AND PRELIMINARIES Sub. 1 Sub. 2 Sub. 3 Mid Final Mid Final Mid Final Std. 1 s s s s s s 111 112 121 122 131 132 Std. 2 s s s s s s 211 212 221 222 231 232 Std. 3 s s s s s s 311 312 321 322 331 332 Std. 4 s s s s s s 411 412 421 422 431 432 Table 1.1: The first way to print S. Mid Final Sub. 1 Sub. 2 Sub. 3 Sub. 1 Sub. 2 Sub. 3 Std. 1 s s s s s s 111 121 131 112 122 132 Std. 2 s s s s s s 211 221 231 212 222 232 Std. 3 s s s s s s 311 321 331 312 322 332 Std. 4 s s s s s s 411 421 431 412 422 432 Table 1.2: The second way to print S. Example1.2. Anotherimportantrealizationoftensorsarethestorageofcolor imagesandvideos. Ablack-and-whiteimagecanbestoredasagreyscalematrix, whoseentriesarethegreyscalevaluesofthecorrespondingpixels. Colorimages are often built from several stacked color channels, each of which represents value levels of the given channel. For example, RGB images are composed of threeindependentchannelsforred, green, andblueprimarycolor components. Wecanapplya3rd-ordertensorP tostoreanRGBimage,whose(i,j,k)entry denotesthevalueofthek-thchannelinthe(i,j)position. (k=1,2,3represent the red, green, and blue channel, respectively.) In order to store a color video, we may need an extra index for the time axis. That is, we employ a 4th-order tensor M = (m ), where M(:,:,:,t) stores the t-th frame of the video as a ijkt color image. Example 1.3. Denote x = (x ,x ,...,x )(cid:62) ∈ Rn. As we know, a degree-1 1 2 n polynomialp (x)=c x +c x +···+c x canberewrittenintop (x)=x(cid:62)c, 1 1 1 2 2 n n 1 wherethevectorc=(c ,c ,...,c )(cid:62). Similarly,adegree-2polynomialp (x)= 1 2 n 2 (cid:80)n c x x ,thatis,aquadraticform,canbesimplifiedintop (x)=x(cid:62)Cx, i,j=1 ij i j 2 where the matrix C = (c ). By analogy, if we denote an mth-order tensor ij C = (c ) and apply a notation, which will be introduced in the next i1i2...im section, then the degree-m homogeneous polynomial n n n (cid:88) (cid:88) (cid:88) p (x)= ··· c x x ...x m i1i2...im i1 i2 im i1=1i2=1 im=1 can be rewritten as p (x)=Cxm. m Moreover, x(cid:62)c = 0 is often used to denote a hyperplane in Rn. Similarly, Cxm =0canstandforandegree-mhypersurfaceinRn. WeshallseeinSection 1.2 that the normal vector at a point x on this hypersurface is n =Cxm−1. 0 x0 0
Description: