Springer Topics in Signal Processing Daniel P. Jarrett Emanuël A.P. Habets Patrick A. Naylor Theory and Applications of Spherical Microphone Array Processing Springer Topics in Signal Processing Volume 9 Series editors Jacob Benesty, Montreal, Canada Walter Kellermann, Erlangen, Germany More information about this series at http://www.springer.com/series/8109 ë Daniel P. Jarrett Emanu l A.P. Habets (cid:129) Patrick A. Naylor Theory and Applications of Spherical Microphone Array Processing 123 DanielP. Jarrett Patrick A.Naylor Kilburn& StrodeLLP Department ofElectrical andElectronic London Engineering UK Imperial CollegeLondon London EmanuëlA.P. Habets UK International AudioLaboratories Erlangen Erlangen Germany ISSN 1866-2609 ISSN 1866-2617 (electronic) SpringerTopics inSignal Processing ISBN978-3-319-42209-1 ISBN978-3-319-42211-4 (eBook) DOI 10.1007/978-3-319-42211-4 LibraryofCongressControlNumber:2016944322 ©SpringerInternationalPublishingSwitzerland2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor foranyerrorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAGSwitzerland Preface The topic of spherical microphone array signal processing has been gaining importance since the publications of Meyer and Elko around 2002, and fuelled by many others since. Sound is unavoidably influenced by the space in which it is rendered, as we all knowfrompersonalexperience,andthecapabilityofmicrophonearraystocapture the spatial information is both fascinating and intriguing. The English physicist Charles Wheatstone is credited with the first use of the term ‘microphone’. However, it was not until the carbon microphone, invented by David Hughes and demonstrated in 1877, that the concept of capturing sound as an electrical signal becameestablished.TheinventionbyGerhardSesslerandJimWestoftheelectret microphone in 1962, and further developments of condenser microphone technol- ogy in particular, led to a significant improvement in quality and reliability. These early microphones were principally targeting the capture of acoustic signalsinaclose-talkingmode,lessthanaround10cmfromthetalker’sorsinger’s lips. Would their inventors have considered that the spatial information associated withthesoundcouldbeuseful,exploitedtolocalizesourcesofsound,discriminate desired sounds from interferences, or even infer the geometry of an acoustic space and navigate within it? We could only guess but certainly the potential to achieve thesegoalshasbeenalwayspresent.Thecatalystformorerecentdevelopmentshas been the happy marriage of high quality, synchronized multichannel analogue-to-digital conversion with powerful digital signal processing hardware and software, facilitating arrays with elements numbering from a handful to hun- dreds, or even thousands. Given the availability of numerous sensors, many alternative geometries can be considered, the spherical geometry being one such with considerable merits. It is the algorithms to process the signals from these numerous microphones that are the key focus of this book. Weofferthereaderaviewofthetheoreticalaspects ofmicrophone arraysignal processing for spherical geometries and some examples of applications of the ensuing algorithms. Our intention is to present the methods in a general form allowing the ideas to be further developed. It is a well known feeling that digging v vi Preface deeper into a subject only serves toreveal greaterdepths and further potential. We hope, nevertheless, that this book will at the same time provide satisfaction to the mind of the curious reader but also serve to equip the researchers of the future to develop and exploit the great potential of spherical microphone arrays and their associated signal processing. WegratefullyacknowledgethecontributionsofSebastianBraun,MajaTaseska, Oliver Thiergart and Mark Thomas to the work presented in this book. We would also like to express our gratitude to Hamza Javed and Maja Taseska for their attentive reading of our drafts, and to Sira Gonzalez and Felicia Lim for providing helpful feedback and suggestions throughout the writing process. London Daniel P. Jarrett Erlangen Emanuël A.P. Habets London Patrick A. Naylor April 2016 Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Background and Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Microphone Array Signal Processing . . . . . . . . . . . . . . . . . . . . 2 1.3 Organization of the Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 Theoretical Preliminaries of Acoustics . . . . . . . . . . . . . . . . . . . . . . 11 2.1 Fundamentals of Acoustics . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Sound Field Representation Using Spherical Harmonic Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3 Sign Convention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.4 Sound Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3 Spatial Sampling and Signal Transformation . . . . . . . . . . . . . . . . . 23 3.1 Time-Frequency Domain Processing . . . . . . . . . . . . . . . . . . . . . 23 3.2 Complex Spherical Harmonic Domain Processing . . . . . . . . . . . . 25 3.3 Real Spherical Harmonic Domain Processing . . . . . . . . . . . . . . . 27 3.4 Spatial Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.4.1 Sampling Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.4.2 Array Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4 Spherical Array Acoustic Impulse Response Simulation . . . . . . . . . 39 4.1 Allen and Berkley’s Image Method . . . . . . . . . . . . . . . . . . . . . 40 4.1.1 Green’s Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.1.2 Image Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.2 SMIR Method in the Spherical Harmonic Domain . . . . . . . . . . . 42 4.2.1 Green’s Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.2.2 Neumann Green’s Function . . . . . . . . . . . . . . . . . . . . . . 44 vii viii Contents 4.2.3 Scattering Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.2.4 SMIR Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.3.1 Truncation Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.3.2 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . 50 4.3.3 Algorithm Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.4 Examples and Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.4.1 Diffuse Sound Field Energy . . . . . . . . . . . . . . . . . . . . . 51 4.4.2 Binaural Interaural Time and Level Differences . . . . . . . . 54 4.4.3 Mouth Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.5 Chapter Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . 61 Appendix: Spatial Correlation in a Diffuse Sound Field. . . . . . . . . . . . 61 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5 Acoustic Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.1 Direction of Arrival Estimation . . . . . . . . . . . . . . . . . . . . . . . . 65 5.1.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5.1.2 Steered Response Power . . . . . . . . . . . . . . . . . . . . . . . . 68 5.1.3 Intensity-Based Method . . . . . . . . . . . . . . . . . . . . . . . . 69 5.1.4 Subspace Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5.1.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.2 Signal-to-Diffuse Ratio Estimation . . . . . . . . . . . . . . . . . . . . . . 80 5.2.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 80 5.2.2 Coefficient-of-Variation Method . . . . . . . . . . . . . . . . . . . 82 5.2.3 Coherence-Based Method . . . . . . . . . . . . . . . . . . . . . . . 83 5.2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5.3 Chapter Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . 88 Appendix: Relationship Between the Zero-Order Eigenbeam and the Omnidirectional Reference Microphone Signal . . . . . . . . . . . . 88 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 6 Signal-Independent Array Processing . . . . . . . . . . . . . . . . . . . . . . 93 6.1 Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 6.2 Design Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 6.2.1 Directivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 6.2.2 Front-to-Back Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 6.2.3 White Noise Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 6.2.4 Spatial Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 6.3 Signal-Independent Beamformers . . . . . . . . . . . . . . . . . . . . . . . 102 6.3.1 Farfield Beamformers . . . . . . . . . . . . . . . . . . . . . . . . . . 102 6.3.2 Nearfield Beamformers . . . . . . . . . . . . . . . . . . . . . . . . . 110 6.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Contents ix 7 Signal-Dependent Array Processing . . . . . . . . . . . . . . . . . . . . . . . . 113 7.1 Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 7.2 Performance Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 7.2.1 Speech Distortion Index . . . . . . . . . . . . . . . . . . . . . . . . 117 7.2.2 Noise Reduction Factor . . . . . . . . . . . . . . . . . . . . . . . . . 118 7.2.3 Array Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 7.2.4 Mean Square Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 7.3 Signal-Dependent Beamformers . . . . . . . . . . . . . . . . . . . . . . . . 120 7.3.1 Maximum SNR Filter . . . . . . . . . . . . . . . . . . . . . . . . . . 120 7.3.2 Wiener Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 7.3.3 Minimum Variance Distortionless Response Filter . . . . . . 122 7.3.4 Parametric Wiener Filter . . . . . . . . . . . . . . . . . . . . . . . . 126 7.3.5 Linearly Constrained Minimum Variance Filter . . . . . . . . 127 7.3.6 Generalized Sidelobe Canceller Structure . . . . . . . . . . . . 129 7.4 Relative Transfer Function Estimation . . . . . . . . . . . . . . . . . . . . 133 7.4.1 Covariance Subtraction Method . . . . . . . . . . . . . . . . . . . 134 7.4.2 Generalized Eigenvector Method . . . . . . . . . . . . . . . . . . 134 7.4.3 Temporal Averaging Method . . . . . . . . . . . . . . . . . . . . . 135 7.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 8 Parametric Array Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 8.1 Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 8.2 Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 8.3 Sound Pressure Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 8.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 8.4.1 Directional Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 8.4.2 Dereverberation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 8.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 9 Informed Array Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 9.1 Noise Reduction Using Narrowband DOA Estimates . . . . . . . . . 152 9.1.1 Signal Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 9.1.2 Tradeoff Beamformer . . . . . . . . . . . . . . . . . . . . . . . . . . 155 9.1.3 Signal Statistics Estimation . . . . . . . . . . . . . . . . . . . . . . 156 9.1.4 Desired Speech Presence Probability Estimation . . . . . . . . 159 9.1.5 Algorithm Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 9.1.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 9.2 Dereverberation Using Signal-to-Diffuse Ratio Estimates . . . . . . . 169 9.2.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 170 9.2.2 Informed Filter for Dereverberation . . . . . . . . . . . . . . . . 173
Description: