ebook img

Theoretical physics 9 - Fundamentals of many-body physics PDF

701 Pages·2018·4.587 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Theoretical physics 9 - Fundamentals of many-body physics

Theoretical Physics 9 Wolfgang Nolting Theoretical Physics 9 Fundamentals of Many-body Physics Second Edition Translated by William D. Brewer 123 WolfgangNolting Humboldt-UniversitätBerlinInst.Physik Berlin,Germany Translator WilliamD.Brewer FUBerlin FBPhysik Inst.f.Experimentalphysik Berlin,Germany ISBN978-3-319-98324-0 ISBN978-3-319-98326-4 (eBook) https://doi.org/10.1007/978-3-319-98326-4 LibraryofCongressControlNumber:2018953845 1stedition:©Springer-VerlagBerlinHeidelberg2009 ©SpringerNatureSwitzerlandAG2018 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface The goal of the present course on “Fundamentals of Theoretical Physics” is to be a direct accompaniment to the lower-division study of physics, and it aims at providing the physical tools in the most straightforward and compact form as needed by the students in order to master theoretically more complex topics and problemsinadvancedstudiesandinresearch.Thepresentationisthusintentionally designed to be sufficiently detailed and self-contained – sometimes, admittedly, at the cost of a certain elegance – to permit individual study without reference to thesecondaryliterature.Thisvolumedealswiththequantumtheoryofmany-body systems.Buildinguponabasicknowledgeofquantummechanicsandofstatistical physics,moderntechniquesforthedescriptionofinteractingmany-particlesystems aredevelopedandappliedtovariousrealproblems,mainlyfromtheareaofsolid- state physics. A thorough revision should guarantee that the reader can access the relevant research literature without experiencing major problems in terms of the conceptsandvocabulary,techniquesanddeductivemethodsfoundthere. The world which surrounds us consists of very many particles interacting with one another, and their description requires in principle the solution of a corresponding number of coupled quantum-mechanical equations of motion (Schrödinger equations), which, however, is possible only in exceptional cases in amathematicallystrictsense.Theconceptsofelementaryquantummechanicsand quantumstatisticsarethereforenotdirectlyapplicableintheforminwhichwehave thus far encountered them. They require an extension and restructuring, which is termed“many-bodytheory”. Firstofall,wehavetolookforpossibilitiesforformulatingrealmany-bodyprob- lemsinamathematicallycorrectbutstillmanageableway.Ifthesystemsconsidered arecomposedofdistinguishableparticles,theirdescriptioncanbeobtaineddirectly fromthegeneralpostulatesofquantummechanics.Moreinteresting,however,are systemsofidenticalparticles,whoseN-particlewavefunctionsmustfulfilquitespe- cialsymmetryrequirements.Workingdirectlywiththerequired(anti-)symmetrised wavefunctionsprovestobeextraordinarilytedious.Afirstperceptiblesimplification is provided in this connection by the formalism of second quantisation. It allows a quite elegant description but of course does not provide an actual solution to v vi Preface the problem. The student who has been confronted in lower-division courses with problems which as a rule can be treated with mathematical rigour has to become accustomedtotheideathatrealisticmany-bodyproblemscanpracticallyneverbe treatedexactly.Inordertoneverthelessfulfilthecentralfunctionofatheoretician, i.e.thedescriptionandexplanationofexperiments,someconcessionsmustbemade. This includes, as a first step, the construction of a theoretical model which can be understood as a caricature of the real world, in which nonessential details are suppressed and only the essence of the problem is emphasised. Finding such a theoreticalmodelmustbeconsideredtobeanontrivialchallengefortheoreticians. Chapter 2 therefore treats the formulation and justification of important standard modelsoftheoreticalphysicsindetail.Theirpresentationiscarriedoutconsistently usingtheformalismofsecondquantisationfromChap.1. Unfortunately, the real situation can seldom be caricatured in such a way that the resulting model is on the one hand still sufficiently realistic and on the other canbetreatedwithmathematicalrigour.Thus,oneusuallyhastoacceptadditional approximationsinordertofindsolutions.Apowerfultechniqueinthisconnection has proven to be the Green’s function method, with its concept of quasi-particles. TheabstracttheoryisdiscussedinChap.3andthenappliedtonumerousconcrete problemsinChap.4.DiagrammaticmethodsofsolutionareworkedoutinChaps.5 and 6. They should be included nowadays within the indispensable repertoire of every theoretician. A number of exercises (together with their explicit solutions) are also included in this volume and are in particular designed to help the student to acquire a facility for working with the formalism and applying it to concrete topics.Thesolutionsgiven,however,shouldnottemptthereadertoforbearmaking a serious effort to solve the problems independently. At the end of each major chapter, questions are included, which can be useful to test the knowledge gained bythereaderandinpreparingforexaminations. This book is the result of diverse special-topics lecture courses on many-body theorywhichIhavegivenattheuniversitiesofWürzburg,Münster,Osnabrück,and Berlin(Germany),Warangal(India),Valladolid(Spain),Irbid(Jordan)andHarbin (China). I am very grateful to the students of those courses for their constructive criticism. It is quite clear to me that the material in this volume with certainty no longer belongs to lower-division physics. However, I also believe that it is indispensable for making the transition to independent research as a theoretician. Since the available textbook literature on the subject of many-body theory as a rulepresupposesadvancedknowledgeandsubstantialexperienceonthepartofthe reader,thepresentbookmight–hopefully–beveryusefulforthe“beginner”.Iam very grateful to the Springer-Verlag for their concurring assessment as well as for theirprofessionalcooperation. Berlin,Germany WolfgangNolting August2008 Contents 1 SecondQuantisation......................................................... 1 1.1 IdenticalParticles ....................................................... 2 1.2 The“Continuous”FockRepresentation ............................... 7 1.3 The“Discrete”FockRepresentation................................... 21 1.4 Exercises................................................................. 28 1.5 Self-ExaminationQuestions............................................ 34 1.5.1 ForSect.1.1.................................................... 34 1.5.2 ForSect.1.2.................................................... 34 1.5.3 ForSect.1.3.................................................... 35 2 Many-BodyModelSystems................................................. 37 2.1 CrystalElectrons........................................................ 39 2.1.1 Non-interactingBlochElectrons ............................. 39 2.1.2 TheJelliumModel ............................................ 44 2.1.3 TheHubbardModel........................................... 56 2.1.4 Exercises....................................................... 60 2.2 LatticeVibrations ....................................................... 65 2.2.1 TheHarmonicApproximation................................ 65 2.2.2 ThePhononGas............................................... 70 2.2.3 Exercises....................................................... 76 2.3 TheElectron-PhononInteraction....................................... 78 2.3.1 TheHamiltonian............................................... 78 2.3.2 TheEffectiveElectron-ElectronInteraction ................. 82 2.3.3 Exercises....................................................... 86 2.4 SpinWaves.............................................................. 90 2.4.1 ClassificationofMagneticSolids............................. 90 2.4.2 ModelConcepts ............................................... 92 2.4.3 Magnons....................................................... 95 2.4.4 TheSpin-WaveApproximation............................... 100 2.4.5 Exercises....................................................... 102 vii viii Contents 2.5 Self-ExaminationQuestions............................................ 105 2.5.1 ForSect.2.1.................................................... 105 2.5.2 ForSect.2.2.................................................... 106 2.5.3 ForSect.2.3.................................................... 107 2.5.4 ForSect.2.4.................................................... 107 3 Green’sFunctions............................................................ 109 3.1 PreliminaryConsiderations............................................. 109 3.1.1 Representations................................................ 109 3.1.2 Linear-ResponseTheory...................................... 116 3.1.3 TheMagneticSusceptibility.................................. 120 3.1.4 TheElectricalConductivity................................... 122 3.1.5 TheDielectricFunction....................................... 125 3.1.6 Spectroscopies,SpectralDensity............................. 127 3.1.7 Exercises....................................................... 133 3.2 Double-TimeGreen’sFunctions ....................................... 135 3.2.1 EquationsofMotion .......................................... 135 3.2.2 SpectralRepresentations...................................... 140 3.2.3 TheSpectralTheorem......................................... 145 3.2.4 ExactExpressions............................................. 148 3.2.5 TheKramers-KronigRelations............................... 152 3.2.6 Exercises....................................................... 154 3.3 FirstApplications ....................................................... 157 3.3.1 Non-interactingBlochElectrons ............................. 157 3.3.2 FreeSpinWaves............................................... 163 3.3.3 TheTwo-SpinProblem........................................ 166 3.3.4 Exercises....................................................... 178 3.4 TheQuasi-particleConcept............................................. 181 3.4.1 One-ElectronGreen’sFunctions.............................. 181 3.4.2 TheElectronicSelf-Energy................................... 184 3.4.3 Quasi-particles................................................. 189 3.4.4 Quasi-particleDensityofStates.............................. 194 3.4.5 InternalEnergy................................................ 196 3.4.6 Exercises....................................................... 199 3.5 Self-ExaminationQuestions............................................ 200 3.5.1 ForSect.3.1.................................................... 200 3.5.2 ForSect.3.2.................................................... 201 3.5.3 ForSect.3.3.................................................... 201 3.5.4 ForSect.3.4.................................................... 202 4 SystemsofInteractingParticles............................................ 205 4.1 ElectronsinSolids ...................................................... 205 4.1.1 TheLimitingCaseofanInfinitelyNarrowBand............ 205 4.1.2 TheHartree-FockApproximation............................ 209 4.1.3 ElectronicCorrelations........................................ 214 4.1.4 TheInterpolationMethod..................................... 217 Contents ix 4.1.5 TheMethodofMoments...................................... 219 4.1.6 TheExactlyHalf-FilledBand ................................ 228 4.1.7 Exercises....................................................... 232 4.2 CollectiveElectronicExcitations....................................... 236 4.2.1 ChargeScreening(Thomas-FermiApproximation)......... 237 4.2.2 ChargeDensityWaves,Plasmons ............................ 241 4.2.3 SpinDensityWaves,Magnons ............................... 250 4.2.4 Exercises....................................................... 254 4.3 ElementaryExcitationsinDisorderedAlloys ......................... 257 4.3.1 FormulationoftheProblem................................... 257 4.3.2 TheEffective-MediumMethod............................... 261 4.3.3 TheCoherentPotentialApproximation...................... 263 4.3.4 DiagrammaticMethods ....................................... 267 4.3.5 Applications ................................................... 278 4.4 SpinSystems............................................................ 280 4.4.1 TheTyablikowApproximation............................... 280 4.4.2 “Renormalised”SpinWaves.................................. 288 4.4.3 Exercises....................................................... 293 4.5 TheElectron-MagnonInteraction...................................... 294 4.5.1 Magnetic4f Systems(s-f-Model)............................ 295 4.5.2 TheInfinitelyNarrowBand................................... 297 4.5.3 TheAlloyAnalogy............................................ 303 4.5.4 TheMagneticPolaron......................................... 305 4.5.5 Exercises....................................................... 314 4.6 Self-ExaminationQuestions............................................ 316 4.6.1 ForSect.4.1.................................................... 316 4.6.2 ForSect.4.2.................................................... 317 4.6.3 ForSect.4.3.................................................... 318 4.6.4 ForSect.4.4.................................................... 318 4.6.5 ForSect.4.5.................................................... 319 5 PerturbationTheory(T =0)............................................... 321 5.1 CausalGreen’sFunctions............................................... 321 5.1.1 “Conventional”Time-DependentPerturbationTheory...... 321 5.1.2 “Switchingon”theInteractionAdiabatically................ 326 5.1.3 CausalGreen’sFunctions..................................... 332 5.1.4 Exercises....................................................... 336 5.2 Wick’sTheorem......................................................... 337 5.2.1 TheNormalProduct........................................... 337 5.2.2 Wick’sTheorem............................................... 341 5.2.3 Exercises....................................................... 346 5.3 FeynmanDiagrams ..................................................... 347 5.3.1 PerturbationExpansionfortheVacuumAmplitude......... 347 5.3.2 TheLinked-ClusterTheorem................................. 356 5.3.3 ThePrincipalTheoremofConnectedDiagrams............. 361 5.3.4 Exercises....................................................... 364 x Contents 5.4 Single-ParticleGreen’sFunctions...................................... 365 5.4.1 DiagrammaticPerturbationExpansions...................... 365 5.4.2 TheDysonEquation........................................... 371 5.4.3 Exercises....................................................... 375 5.5 TheGround-StateEnergyoftheElectronGas(JelliumModel)...... 376 5.5.1 First-OrderPerturbationTheory.............................. 376 5.5.2 Second-OrderPerturbationTheory........................... 379 5.5.3 TheCorrelationEnergy....................................... 385 5.6 DiagrammaticPartialSums............................................. 397 5.6.1 ThePolarisationPropagator .................................. 397 5.6.2 EffectiveInteractions.......................................... 403 5.6.3 VertexFunction................................................ 408 5.6.4 Exercises....................................................... 411 5.7 Self-ExaminationQuestions............................................ 413 5.7.1 ForSect.5.1.................................................... 413 5.7.2 ForSect.5.2.................................................... 413 5.7.3 ForSect.5.3.................................................... 414 5.7.4 ForSect.5.4.................................................... 414 5.7.5 ForSect.5.5.................................................... 414 5.7.6 ForSect.5.6.................................................... 415 6 PerturbationTheoryatFiniteTemperatures............................. 417 6.1 TheMatsubaraMethod................................................. 417 6.1.1 MatsubaraFunctions.......................................... 418 6.1.2 TheGrandCanonicalPartitionFunction..................... 424 6.1.3 TheSingle-ParticleMatsubaraFunction..................... 427 6.1.4 Exercises....................................................... 431 6.2 DiagrammaticPerturbationTheory .................................... 432 6.2.1 Wick’sTheorem............................................... 432 6.2.2 DiagramAnalysisoftheGrand-CanonicalPartition Function........................................................ 436 6.2.3 RingDiagrams................................................. 443 6.2.4 Single-ParticleMatsubaraFunctions......................... 446 6.2.5 TheDysonEquationandSkeletonDiagrams................ 451 6.2.6 TheHartree-FockApproximation............................ 456 6.2.7 Second-Order“PerturbationTheory” ........................ 457 6.2.8 TheHubbardModel........................................... 460 6.2.9 TheJelliumModel ............................................ 462 6.2.10 The Imaginary Part of the Self Energy in the Low-EnergyRegion........................................... 464 6.2.11 Quasi-particlesandtheFermiLiquid......................... 467 6.2.12 Exercises....................................................... 474 6.3 Two-ParticleMatsubaraFunctions..................................... 477 6.3.1 DensityCorrelation............................................ 477 6.3.2 ThePolarisationPropagator .................................. 485

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.