Theoretical Foundations for Quantitative Finance 10326hc_9789813202474_tp.indd 1 13/4/17 8:28 AM b2530 International Strategic Relations and China’s National Security: World at the Crossroads TTTThhhhiiiissss ppppaaaaggggeeee iiiinnnntttteeeennnnttttiiiioooonnnnaaaallllllllyyyy lllleeeefffftttt bbbbllllaaaannnnkkkk b2530_FM.indd 6 01-Sep-16 11:03:06 AM Theoretical Foundations for Quantitative Finance Luca Spadafora Università Cattolica del Sacro Cuore, Italy Gennady P Berman Los Alamos National Laboratory, USA & New Mexico Consortium, USA World Scientific NEW JERSEY • LONDON • SINGAPORE • BEIJING • SHANGHAI • HONG KONG • TAIPEI • CHENNAI • TOKYO 10326hc_9789813202474_tp.indd 2 13/4/17 8:28 AM Published by World Scientific Publishing Co. Pte. Ltd. 5 Toh Tuck Link, Singapore 596224 USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601 UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE Library of Congress Cataloging-in-Publication Data Names: Spadafora, Luca, author. | Berman, Gennady P., 1946– author. Title: Theoretical foundations for quantitative finance / by Luca Spadafora, Università Cattolica del Sacro Cuore, Italy, Gennady P. Berman, Los Alamos National Laboratory, USA & New Mexico Consortium, USA. Description: New Jersey : World Scientific, [2017] | Includes bibliographical references and index. Identifiers: LCCN 2016055368 | ISBN 9789813202474 (hc : alk. paper) Subjects: LCSH: Finance--Mathematical models. | Investments--Mathematical models. Classification: LCC HG106 .S628 2017 | DDC 332.01/5195--dc23 LC record available at https://lccn.loc.gov/2016055368 British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. Copyright © 2017 by World Scientific Publishing Co. Pte. Ltd. All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher. For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher. Desk Editors: Dipasri Sardar/Alisha Nguyen Typeset by Stallion Press Email: [email protected] Printed in Singapore Dipa - 10326 - Theoretical Foundations.indd 1 29-03-17 2:54:57 PM April12,2017 6:37 TheoreticalFoundationsforQuantitativeFinance 9inx6in b2733-fm pagev Preface The last decade was characterized by several financial crises that dramaticallychangedthewholefinancialframework,thebehaviorofmarket participants and, in general, the perception of financial investments. As a consequenceofthissortofrevolution,differentcornerstonesofthe classical QuantitativeFinance (QF)frameworkhavebeenchangedby moremodern approaches that can better describe such a different financial system. ThisbookpresentsboththeclassicalandmodernQFtopicsinaunified framework.Itdiscusseswhichoftheoldparadigmsarestillvalidinthisnew financial worldand which havebeen reformulated.This coherentintroduc- tion to modern QF theory is addressed to readers with a strong quantita- tive backgroundwho seek to become employedinthis fieldasQuantitative Analysts(orQuants)andtoactivepractitionersinterestedinreviewingthe recent changes in QF. The book deals with quite a wide class of models, ranging from the rational pricing of financial derivatives to quantitative risk estimation. For this reason, it is a broadintroduction in the sense that it is not focused on a particular topic, but aims to summarize the technical tools required in a wide range of QF topics. The applications described in the book, although close to professional models, should be regarded as summaries of concepts thatshowhowamathematicaltoolcanbeexploitedinpracticalsituations. For this reason, this book is well suited for junior professionals who want v April12,2017 6:37 TheoreticalFoundationsforQuantitativeFinance 9inx6in b2733-fm pagevi vi Preface to learn more advanced topics that can be utilized in a variety of practical situations during their future careers. Ontheotherside,thisbookdoesnotdealwithissuesrelatedtooptimal investmentstrategiesandtheforecastingoffinancialtrends,evenifwethink that most of the mathematical tools and models described in the book can be considered as a good starting point for these kinds of applications. Most of the topics in this book are derived from the lectures of a QF coursegivenbyoneoftheauthorstograduatestudentsatCatholicUniver- sityofthe SacredHeart,DepartmentofMathematics,PhysicsandNatural Sciences,Italy;examplescomefrompracticalexperienceinthemainItalian banks. The authors gratefully acknowledge the assistance of E. Benzi, G. D. Doolen, M. Dubrovich, G. Giusteri, A. Marziali, A. Pallavicini, N. Picchiotti, A. Spuntarelli and M. Terraneo, who carefully reviewed the manuscriptandprovidedmanycorrectionsandsuggestionsforitsimprove- ment. The authors thank N. Balduzzi for providing the illustrations. Any remaining flaws are the responsibility of the authors. L. Spadafora and G. P. Berman April12,2017 6:37 TheoreticalFoundationsforQuantitativeFinance 9inx6in b2733-fm pagevii Contents Preface v Chapter 1. Introduction 1 Chapter 2. All the Financial Math You Need to Survive with Interesting Applications 5 2.1 Introduction. . . . . . . . . . . . . . . . . . . . . 5 2.2 Probability Space . . . . . . . . . . . . . . . . . . 5 2.2.1 Probability Measure and Random Variables . . . . . . . . . . . . . . . . . . 8 2.2.2 The Information Flow Through Time: The Role of the Filtration . . . . . . . . 11 2.3 How to Estimate a Random Variable — Expectations and Conditioning . . . . . . . . . . 13 2.4 Main Features of Probability Measure . . . . . . 19 2.5 Moments and Cumulants . . . . . . . . . . . . . 21 2.6 Statistical Estimators . . . . . . . . . . . . . . . 24 2.7 Probability Density Functions . . . . . . . . . . . 25 2.7.1 Uniform Distribution . . . . . . . . . . . 26 2.7.2 Bernoulli and Binomial Distributions . . . . . . . . . . . . . . . . 27 2.7.3 Normal Distribution . . . . . . . . . . . . 28 vii April12,2017 6:37 TheoreticalFoundationsforQuantitativeFinance 9inx6in b2733-fm pageviii viii Contents 2.7.4 Empirical Distribution . . . . . . . . . . 28 2.7.5 Exponential Distribution and Student’s t-Distribution . . . . . . . . . . . . . . . 33 2.8 Central Limit Theorem . . . . . . . . . . . . . . 34 2.9 Stochastic Processes . . . . . . . . . . . . . . . . 37 2.10 Brownian Motion . . . . . . . . . . . . . . . . . . 39 2.11 Quadratic Variation . . . . . . . . . . . . . . . . 42 2.12 Martingale . . . . . . . . . . . . . . . . . . . . . 43 2.13 Stochastic Differential Equations (SDEs) . . . . . 44 2.14 Itoˆ’s Lemma. . . . . . . . . . . . . . . . . . . . . 47 2.15 Some Very Useful Theorems . . . . . . . . . . . . 50 2.15.1 Martingale Representation Theorem . . . 50 2.15.2 Feynman–Kac Theorem . . . . . . . . . . 52 2.15.3 Radon–Nikodym Theorem . . . . . . . . 53 2.15.4 Girsanov’s Theorem . . . . . . . . . . . . 55 Chapter 3. The Pricing of Financial Derivatives — The Replica Approach 59 3.1 Introduction — The Pricing of Financial Derivatives . . . . . . . . . . . . . . . . . . . . . 59 3.2 What Kind of Model are We Looking For?. . . . 60 3.2.1 Coherence of the Pricing Methodology . . . . . . . . . . . . . . . . 61 3.2.2 Hedging Strategies. . . . . . . . . . . . . 63 3.3 Are We Able to do the Same? Replica Pricing . . . . . . . . . . . . . . . . . . . 63 3.3.1 Bank Account . . . . . . . . . . . . . . . 66 3.3.2 Self-Financing Strategies . . . . . . . . . 70 3.3.3 Arbitrage . . . . . . . . . . . . . . . . . . 72 3.3.4 Replica Examples . . . . . . . . . . . . . 74 3.3.4.1 Zero Coupon Bond . . . . . . . 75 3.3.4.2 Depo Rates . . . . . . . . . . . 77 3.3.4.3 Forward . . . . . . . . . . . . . 77 3.3.4.4 Forward Rate Agreement . . . 79 3.4 Derivatives: Call, Put and Digital Options . . . . 82 Chapter 4. Risk-Neutral Pricing 87 4.1 Introduction. . . . . . . . . . . . . . . . . . . . . 87 April12,2017 6:37 TheoreticalFoundationsforQuantitativeFinance 9inx6in b2733-fm pageix Contents ix 4.1.1 Setting the Stage . . . . . . . . . . . . . 89 4.1.2 Point One: Modeling the Underlying . . . . . . . . . . . . . . . . . 91 4.1.3 Point Two: Guess a Pricing Formula . . . . . . . . . . . . . . . . . . 92 4.1.4 Point Three: Finding an Equivalent Martingale Measure . . . . . . . . . . . . 94 4.1.5 Point Four: Defining the Replica Strategy . . . . . . . . . . . . . . . . . . 96 4.1.6 Point Five: The Pricing Algorithm. . . . 98 Chapter 5. The Black and Scholes Framework and Its Extensions 101 5.1 Black–Scholes Model — Part I . . . . . . . . . . 101 5.2 BS Model — Part II — Girsanov is Back . . . . . . . . . . . . . . . . . . 106 5.3 Put–Call Parity . . . . . . . . . . . . . . . . . . . 107 5.4 Implied Volatility and the Calibration Problem . . . . . . . . . . . . . . . . . . . . . . . 109 5.5 Digital Options . . . . . . . . . . . . . . . . . . . 115 5.6 Change of Numeraire. . . . . . . . . . . . . . . . 118 5.6.1 The Forward Measure . . . . . . . . . . . 122 5.7 Greeks . . . . . . . . . . . . . . . . . . . . . . . . 124 5.8 Heston Model . . . . . . . . . . . . . . . . . . . . 130 5.8.1 Incomplete Markets . . . . . . . . . . . . 130 5.8.2 Heston Model Equations . . . . . . . . . 131 5.8.3 Heston Risk Neutral Model . . . . . . . . 132 5.8.4 Heston Pricing Formula . . . . . . . . . . 134 5.8.5 Heston Implied Volatility . . . . . . . . . 136 Chapter 6. Risk Modeling 139 6.1 Introduction. . . . . . . . . . . . . . . . . . . . . 139 6.2 Risk? What is Risk? . . . . . . . . . . . . . . . . 140 6.3 What Kind of Model are You Looking For? . . . 140 6.4 Risk Measures: Value-at-Risk and Expected Shortfall . . . . . . . . . . . . . . . . . . . . . . . 142 6.4.1 Some Caveats on VaR Estimation . . . . 146 6.4.1.1 Percentile Estimation. . . . . . 147 6.4.1.2 VaR Statistical Error . . . . . . 155 April12,2017 6:37 TheoreticalFoundationsforQuantitativeFinance 9inx6in b2733-fm pagex x Contents 6.5 Real-World Measure . . . . . . . . . . . . . . . . 156 6.6 Market Risk Estimation . . . . . . . . . . . . . . 158 6.6.1 Historical Method . . . . . . . . . . . . . 163 6.6.2 Parametric Method . . . . . . . . . . . . 166 6.6.3 Monte Carlo Method . . . . . . . . . . . 171 6.7 Does it Really Work? The Backtesting Approach . . . . . . . . . . . . . . . . . . . . . . 172 6.8 From Theory to Practice. . . . . . . . . . . . . . 177 Chapter 7. The New Post-Crisis Paradigms 181 7.1 The Financial World After Financial Crisis . . . 181 7.2 Multi-Curve Framework . . . . . . . . . . . . . . 183 7.3 Fair Value Adjustments . . . . . . . . . . . . . . 187 7.3.1 Credit Value Adjustment . . . . . . . . . 187 7.4 Counterparty Credit Risk . . . . . . . . . . . . . 192 Appendix 199 A.1 Black–Scholes Pricing Formula Derivation — Risk-Neutral Approach. . . . . . . . . . . . . . . 199 A.2 Delta Formula for Call Options . . . . . . . . . . 202 A.3 Heston Model Pricing Formula Derivation . . . . 203 Bibliography 207 Index 211