THEORETICALANDEXPERIMENTALSTUDIESOFTHE 2-DIMENSIONALGRATINGCOUPLEDSTRUCTURESFOR IH-VQUANTUMWELLINFRAREDPHOTODETECTORS BY YEONG-CHENGWANG ADISSERTATIONPRESENTEDTOTHEGRADUATESCHOOL OFTHEUNIVERSITYOFFLORIDAIN PARTIALFULFILLMENTOFTHEREQUIREMENTS FORTHEDEGREEOFDOCTOROFPHILOSOPHY UNIVERSITYOFFLORIDA 1994 ACKNOWLEDGEMENTS Iwouldliketoexpressmysinceregratitudetomyadvisorandthechairmanofmy committee,ProfessorShengS.Li,whogavemeanopportunitytoworkasoneofhis graduatestudents. Thisresearchwascompletedunderhisguidance,encouragement, andsupport. IalsowishtothankProfessorsDorotheaE.Burk,GysBosman,William R.Eisenstadt,andChen-ChiHsuforservingonmysupervisorycommittee. ThanksareextendedtoDr. LarryS.YuofNationalSemiconductorCorp. and Dr. Ping-ChangYangofFan-ChiaUniversityfortheirvaluablediscussions,Yenhwa Wangforhisgreathelpinsemiconductorprocessing,andmyfriendsJung-chiChi- ang,Chih-HungWu,Ming-YehChuang,DanielWang,ZhiliangChenandYun-Shun Changfortheirfriendship. Iamgreatlyindebtedtomywifeandparentsfortheirlove,support, anden- couragementduringthearduousprocedureofcompletingmyDoctorofPhilosophy degree. Finally,thefinancialsupportoftheDefenseAdvancedResearchProjectAgency (DARPA)isgratefullyacknowledge. n TABLEOFCONTENTS Page ACKNOWLEDGEMENTS “ ABSTRACT CHAPTER 1 INTRODUCTION 1 1.1QuantumWellDetectors 1 1.2QuantumWellIntersubbandAbsorption 2 1.3GratingCoupler ^ 1.4SynopsisofChapters 6 2 ANUMERICALANALYSISOFREFLECTIONSQUARE DOTMETALGRATINGFORMULTIQUANTUMWELL INFRAREDPHOTODETECTORS 19 2.1Introduction 19 2.2TheTheoreticalFormalism 21 2.3ResultsandDiscussion 24 2.4Conclusion 28 3 DESIGNOFATWO-DIMENSIONALSQUAREAPERTURE MESHMETALGRATINGCOUPLERFORAMINIBAND TRANSPORTGaAsQUANTUMWELLINFRARED PHOTODETECTOR 37 3.1Introduction 37 3.2BasicTheory 39 3.3ResultsandDiscussion 43 3.4Conclusion 46 4 GEOMETRYCONSIDERATIONSOFTWO-DIMENSIONAL GRATINGCOUPLERFORGaAsQUANTUMWELL 111 INFRAREDPHOTODETECTOR 55 4.1Introduction 55 4.2TheoryandIllumination 57 4.3Conclusion 60 5 EXPERIMENTALIMPLEMENTATIONSOFTWODIMENSIONAL SQUAREAPERTUREMESHMETALGRATINGCOUPLER 67 5.1Introduction 67 5.2SamplePreparation 68 5.3GratingFabrication 69 5.4Theory 76 5.5OpticalMeasurement 71 5.6ResultsandDiscussion 72 5.7Conclusion 74 6 DESIGNOFPLANAR2-DCIRCULARAPERTUREMETAL GRATINGCOUPLERFORGaAsQUANTUMWELL INFRAREDPHOTODETECTORS 78 6.1Introduction 78 6.2BasicTheory 80 6.3ResultsandDiscussion 83 6.3.1SquareSymmetryGratingStructure 83 6.3.2HexagonalSymmetryGratingStructure 84 6.3.3ComparisonbetweenExperimentandTheory 85 6.4Conclusion 86 7 DESIGNOFANOPTIMUMPERFORMANCEBTMQWIP 96 7.1Introduction 96 7.2GeneralConsiderationofaBTMQWIP 97 7.2.1BarrierHeightandAUGai-^AsComposition 98 7.2.2SuperlatticeBarrierWidth 98 7.2.3DopingConcentrationintheQuantumWell 99 7.3QuantumWellPeriod 99 7.4BlockingBarrierandDarkCurrent 102 7.5WaveguideStructure 103 7.6Conclusion 107 IV SUMMARY 117 8 REFERENCES 119 APPENDIX 128 BIOGRAPHICALSKETCH 130 V AbstractofDissertationPresentedtotheGraduateSchool oftheUniversityofFloridainPartialFulfillmentofthe RequirementsfortheDegreeofDoctorofPhilosophy THEORETICALANDEXPERIMENTALSTUDIESOFTHE 2-DIMENSIONALGRATINGCOUPLEDSTRUCTURESFOR HI-VQUANTUMWELLINFRAREDPHOTODETECTORS By Yeong-ChengWang April1994 Chairman: ShengS.Li MajorDepartment: ElectricalEngineering ThisresearchmainlydealswiththequantumefficiencyenhancementofQWlPs (QuantumWellInfrared Photodetectors) byusingthe2-dimensional (2-D) planar metalgratingcouplers. Themotivationisoriginatedfromtheintersubbandselection ruleofquantumwell,whichrequiresthepolarizationofincidentinfrared(IR)radi- ationtohaveacomponentperpendiculartothequantumwelllayers. Theunique featuresofthe2-Dplanarmetalgratingcouplerarethat(a)iteffectivelyscattersthe normalincidentradiationindependentoflightpolarizationand(b)itcanbeeasily fabricatedbyusingasimplemetallift-offtechnique. Threegrating structuresare developedtocouplethenormalincidentIRlightintotheQWlPs. Thefirstgrating structureisthe2-Dsquaredotreflectionmetalgratingwithacouplingefficiencyof 20%. Thecouplingefficiencycanbeincreasedbyemployingitscomplementarygeom- etry,the2-Dsquareaperturemeshmetalgrating. About70%ofthenormalincident lightisdiffractedintoTMwavesavailableforQWIPabsorption. Tosolvethecorner VI roundingeffectobservedinthesquareshapegrating,a2-Dcircularaperturemetal gratingcouplerisdeveloped,whichhasthesamecouplingefficiencyof70%andwith aefficiencyof2.7timeshigherthanthatofthe45°polishededgeQWIPwithcorre- spondingquantumwellparameters.Inadditiontothesquaresymmetryarrangement requiredinthethreegratingdesigns,onemorebenefitfromthehexagonalsymmetry circularaperturegratingisawidercouplingbandwidth. Foreachgratingstructure, severaluniversalplotsbasedontwonormalizedparameters\jgandajgwerepre- sented,whereAisthewavelength,gisthegratingperiod,andaisthedimensionof gratingshape. Theuniversalplotsprovideaconvenientwayforgratingdesign. Modalexpansionandmethodofmomentsaretwobasicapproachesusedinthe numericalanalysisofgratingcouplers. Thediffractedangleanddiffractedpowerare drawn inuniversalplots, thediffractedangledetermines theabsorption constant, combiningwiththediffractedpowerthespectralquantumefficiencyofQWIPcanbe calculated. Inadditiontocouplingenhancementbygrating,thewaveguidegeometryQWIP showsafurtherimprovementinIRabsorption. ThedesignofQWIPwaveguideis carriedoutnumerically. Togetherwiththeoptimumperiodofmultiquantumwells and theblockinglayerstoreducethedark current, ahigh performanceQWIPis proposed. Vll CHAPTER 1 INTRODUCTION 1.1QuantumWellDetectors Thereisagreatneedforhighresolution,highsensitivityfocalplanearrayde- tectorsinthelongwavelengthinfraredspectrumofthe8-14fimatmosphericwindow forboththemilitaryandcivilianregimes. Themostwidelyusedinfrareddetector materialsareintrinsicSiandHgCdTe(MCT).Evenwiththerapidgrowthofthe silicon-basednewtechnologiesandmicroelectronicsindustry, it isgenerallyrecog- nizedthatforlongwavelengthinfrareddetectorapplicationsIII-Vcompoundsemi- conductorsaresuperiortoSi [1]. Thisisduetodifferentmaterialproperties,such asawiderangeofavailablebandgaps,thedirectbandgapsthatfacilitatesefficient conversionfromlighttoelectricity,andcarrierswithveryhighmobility. Thedif- ficultiesinmaterialsgrowth,processing, andotherdetailsofthesetechnologiesof HgCdTematerialhavemadeithighlydesirabletoexaminewhetherperformancecan beimprovedbyothermaterialsystems[2]. Sincethematerialanddevicetechnolo- giesinHI-VcompoundsemiconductorsarefarmoreadvancedthanHgCdTe,itis naturaltoinvestigatetheseHI-Vcompoundsforpossibleapplicationsinlongwave- lengthinfrareddetection. Recently,IH-Vquantumwell/superlatticestructureshave beenusedtoconstructlongwavelengthinfraredphotodetectors [3]. Thequantum wellisformedbyusingalayerofanarrowbandgapsemiconductor(suchasGaAs) sandwichedbetweentwowider bandgap semiconductorlayers (such AlxGai_a;As). Themotionoftheelectronperpendiculartothelayersbecomesquantizedsothat localized(inthedirectiontransversetothelayers)two-dimensional(2-D)subbands ofsize-quantizedstateswereformedinsidethequantumwell[4-6]. 1 2 Thesemulti-quantumwellstructuresareusuallygrownbymolecularbeamepi- taxy (MBE) technique, whichallowstheexact adjustmentofthemost important deviceparameters. Bychangingthewellwidth andbarrierheight, detectors can bedesignedwithresponsepeaksfromthemid-tothefar-infraredwavelengthre- gions. Accordingtotheelectronstransportapproaches,twofundamentalstructures ofquantumwellinfraredphotodetectors (QWlPs) areillustratedinFig. 1.1. For thebound-to-continuous(BTC)QWlPs(Fig. 1(a)),theelectronsphotoexcitedfrom theboundgroundstatebyinfrared(IR)radiationaretransportedthroughtheex- tendedcontinuumbandabovethebarrierunderanappliedelectricfield [7],while forabound-to-miniband(BTM)QWIP,asshowninFig. 1(b),theseelectronsare transportedthroughaglobalminibandformedbysuperlatticebarriers. 1.2QuantumWellIntersubbandAbsorption TheabsorptioninaQWIPisbasedonintersubbandtransitionofn-typedoped quantumwellheterostructures. UponilluminationofIRradiation,electronsareex- citedfromtheground stateintotheexcitedstate [8]. Onlyintheexcitedstate, electronsmovinginthedirectionperpendiculartoquantumwellsbecomespossible, whichproducetheelectricsignalunderanappliedelectricfield. Therefore,thebasic operationofQWlPsisphotoconductivetype,andtheschematicdiagramofadetector pixelisshowninFigure1.2. Carefulopticaldesignisneededsinceoneofthemajor problemsencounteredintype-I(n-doped) QWlPsisthatthepolarizationselection ruleforintersubbandtransitionrequiresonecomponentoftheelectricfieldvector oftheIRradiationtobepolarizedperpendiculartothequantumwelllayerplanes [9-11]. Thisresultsinthedetectorshavenophoto-responseforradiationincidentin thedirectionnormaltothequantumwelllayers. Forfocalplanearrays(FPAs)ap- plications,asshowninFig. 1.3,aresponsetonormalincidentradiationisrequisite. Forthisreason,specialschemesofcouplingtoconvertthetransverseelectromagnetic waveintoadirectionsuitableforabsorptionarenecessary. Avarietyoftechniques 3 havebeenemployed, suchasa45° anglepolishedfacet insubstrateofthedetec- torsampleasshowninFig. 1.4(a),theilluminationatBrewster’sangleorientation (Fig. 1.4(b)), aprismcoupler [12]inthedetectorsurface (Fig. 1.4(c)),alamellar gratingcoupler(Fig. 1.5(a)), andadoubleperiodicmetalgratingonthedetector surface(Figs. 1.5(b),(c)).Thecouplingoftheincidentintensitytotheintersubband transitionsistooweektobeusedforsampleorientedatBrewster’sangleorcoupled byprism. Thelightcouplingthrougha45°polishedfacetonlyallowsincidentlight toaccessoneedgeofthedetector,whichispossibletoformonlyone-dimensional (1-D)lineararrays. ForimagingapplicationinFPAs,itisnecessarytocouplelight uniformlyintothe2-Darraysofsuchdetectors. A1-Dlineargratingeitherbyde- positingmetallinesontothedetectorsurface(Figs. 1.2and 1.5(a))orbychemical etchingthedetectorsurfaceintoperiodicprofile(Fig. 1.6(a))orfollowedbymetal deposition(Fig. 1.6(b))arepotentiallyapplicabletothefabricationof2-Ddetector arrays. However,theseapproachesarepolarizationdependent,onlycoupletransverse magnetic(TM)componentoftheincidentlight.Tosolvethis,adoubleperiodiccross gratingcouplerisusedtoeffectivelycouplethenormalincidentIRradiationintothe dopedwellsindependentoflightpolarization. The detector array consists ofpixelsofQWlPs arranged periodically on the detectorsubstrate. Toallownormalincidenceillumination,thegratingcanbefabri- catedeitheronthesubstrateside(Fig. 1.7(a))oronthetopsurface(Fig. 1.7(b))of thedetectors. Itisworthyofnotingthatthelatterhcistheadvantageovertheformer inthatiteliminatestheundesirablepixelcrosstalkasshowninFig. 1.7. 1.3GratingCoupler Theabovediscussionssuggestthatdiffractiongratingisaneffectiveopticalcou- plingmeansforfabricatinglargearean-typeQWIParrays. Thishasbeendemon- stratedintheearlywork[13,14]ofintersubbandresonancesinelectroninversionlayer