ebook img

The Value of Social Media for Predicting Stock Returns: Preconditions, Instruments and Performance Analysis PDF

140 Pages·2015·47.746 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Value of Social Media for Predicting Stock Returns: Preconditions, Instruments and Performance Analysis

The Value of Social Media for Predicting Stock Returns Michael Nofer The Value of Social Media for Predicting Stock Returns Preconditions, Instruments and Performance Analysis With a Foreword by Prof. Dr. Oliver Hinz Michael Nofer Darmstadt, Germany Dissertation, TU Darmstadt, Germany, 2014 ISBN 978-3-658-09507-9 ISBN 978-3-658-09508-6 (eBook) DOI 10.1007/978-3-658-09508-6 Library of Congress Control Number: 2015935424 Springer Vieweg © Springer Fachmedien Wiesbaden 2015 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, speci(cid:191) cally the rights of translation, reprinting, reuse of illus- trations, recitation, broadcasting, reproduction on micro(cid:191) lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a speci(cid:191) c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. Printed on acid-free paper Springer Vieweg is a brand of Springer Fachmedien Wiesbaden Springer Fachmedien Wiesbaden is part of Springer Science+Business Media (www.springer.com) Foreword Firms like Facebook or Pinterest !bat have access to a large number of users impact our daily life in many aspects. Facebook for example has over one billion users registered rof their online service allowing their user base to manage social contacts, ot post and share content and to communicate their taste by clicking on "Like" buttons !bat are nowadays available on many websites. Many agree that their market capitalization cannot be justified by their tangible assets like ma cbines or inventories, but bases mainly on their access ot unique consumer data that makes these firms special. Users of these networks leave digital ,stnirptoof reveal their preferences or make social recommendations that seem valuable rof .ssenisub-e nO the one hand a lot of these data is freely accessible and on the other hand these data can be used ot forecast future developments dna can thereby potential ly be monetized. This potential makes this dleif os attractive these .syad Big Data is assumed to be the new oil and we are currently in the middle of a gold rush. Researchers and practitioners alike believe !bat Internet data are also valua ble rof beating eht stock market. Michael Nofer's dissertation tries ot assess the value of social media rof predicting stock retorns and examines the precondi tions, instruments and finally assesses the potential performance gains. It is one of eht tsrif dissertations !bat examines this phenomenon with such a great care, with such a huge data base and with a different set of methods. A common theme of this book is the thoughtful approach in all essays in identifying the important and timely research questions and the depth at which the authors examines the issue at hand. This si not an easy undertaking dna I laud the nice empirical work !bat has been carried .tuo I highly recommend this book ot both, practitioners and researchers who are interested in predicting eht development of the stock market. The book sah the potential ot be one of the milestones in this domain and in my opinion the read sre can highly benefit from Michael Nofer's work. I wish the author all the best with this publication and I believe that the book will be a huge !sseccus Tecbnische Universitiit Darmstadt Prof. .rD Oliver Hinz Acknowledgements This dissertation was accepted by TU Darmstadt in November 2014. I would like to take this opportunity to thank those people who supported me during my time at eht Chair of Information Systems I Electronic Markets. I would particularly like to thank my supervisor, Prof. Dr. Oliver Hinz, for giving me the chance to conduct research under outstaoding conditions in such an interesting field of stody. When he founded the Chair in 2011, I was fortonate to be among the first PhD stodents. Despite his numerous responsibilities, Prof. Hinz fully dedicates his time to his stodents whenever needed. Every day I en joyed working in sucb a pleasant atmosphere, gaining new insights again dna again. It was also a great pleasure to see the team grow over the years. I addi tionally thank Prof. Dr. Alexander Ben1ian (Chair of Information Systems and Electronic Services, TU Darmstadt) for co-supervising my dissertation. One article of this dissertation was written alongside Prof. Dr. Jan Munter mano (University of GOttingen) and Dr. Heiko RoBnagel (Frauohofer-Gesell schaft). I am very grateful for the opportunity to work in conjunction with such notable researchers. I would also like to thank my colleagues at TU Darmstadt. We have sup ported each other not only with technical koowledge, but with our interpersonal support. The advice I received during the scientific colloqniums was especially valuable to me. I particularly thank Markos Franz for comforting me after the defeats snfIered by my favorite football club Karlsruher SC. I am also grateful to have met talented stodents who supported me in terms of data collection and programming tasks. Finally, I want to thank my friends and especially my wonderful family for accompanying me on this journey. This dissertation would not have been possi ble without the encouragements of those people who unconditinna1ly supported me over the years. Darmstadt Michael Nofer Table of Contents Foreword .............................................................................................................. V stnemegdelwonkcA ............................................................................................ IIV tsiL of serugiF .................................................................................................. IIIX tsiL of selbaT ..................................................................................................... XV tsiL of snoitaiverbbA ...................................................................................... IIVX 1 noitcudortnI ............................................................................. 1 1.1 sysponyS ............................................................................................... 1 2.1 hcraeseR stxetnoC ................................................................................. 3 1.2.1 tekraM ycneiciffE ...................................................................... 3 2.2.1 Wisdom of sdworC .................................................................... 4 3.2.1 dooM sisylanA ........................................................................... 5 4.2.1 ycavirP dna ytiruceS .................................................................. 5 3.1 erutcurtS of eht Dissertation .................................................................. 6 2 tekraM seilamonA no dediS-owT noitcuA Platforms ••.••.•• 11 Abstract ....................................................................................................... 11 1.2 noitcudortnI ......................................................................................... II 2.2 suoiverP hcraeseR ............................................................................... 31 1.2.2 dediS-owT stekraM .................................................................. 31 2.2.2 tneiciffE stekraM dna tekraM seilamonA ................................ 41 3.2 laciripmE ydutS .................................................................................. 61 1.3.2 Platform noitpircseD ................................................................ 71 2.3.2 sevitpircseD ............................................................................. 71 3.3.2 sisylanA ................................................................................... 02 4.2 noissucsiD ........................................................................................... 32 1.4.2 snoitatimiL dna erutuF hcraeseR ............................................. 52 2.4.2 noisulcnoC ............................................................................... 52 X elbaT of Contents 3 Are Crowds on the Internet Wiser than Experts? - The Case of a Stock Prediction Community .................... 27 Abstract ....................................................................................................... 72 1.3 Introduction ......................................................................................... 72 3.2 Previous Research ............................................................................... 30 1.2.3 Domain Background ................................................................ 30 2.2.3 Theoretical dnuorgkcaB ........................................................... 30 3.3 puteS of Empirical Study .................................................................... 63 1.3.3 Data Collection ........................................................................ 63 2.3.3 Data Analysis ........................................................................... 24 3.4 stluseR of Empirical Study ................................................................. 44 1.4.3 Comparison of Forecast Accuracy between Professional Analysts and the Crowd ........................................................... 44 2.4.3 Diversity and Independence .................................................... 84 5.3 Discussion ........................................................................................... 15 1.5.3 snoitacilpmI ............................................................................. 15 2.5.3 Sunnnary and .kooltUO ............................................................ 25 3.6 Appendix ............................................................................................. 55 4 Using Twitter to Predict the Stock Market: Where si the Mood Effect? .................................................................... 36 Abstract ....................................................................................................... 36 1.4 Introduction ......................................................................................... 36 2.4 Previous Research ............................................................................... 56 1.2.4 laroivaheB Finance .................................................................. 56 2.2.4 ecneulfnI of Mood on erahS snruteR ....................................... 76 3.2.4 evitciderP eulaV of laicoS Media ............................................ 96 3.4 Empirical Study .................................................................................. 17 1.3.4 Data Collection and Method .................................................... 17 4.4 stluseR ................................................................................................. 67 1.4.4 evitpircseD scitsitatS ............................................................... 67 2.4.4 pihsnoitaleR between laicoS Mood and eht kcotS Market ...... 77 3.4.4 pihsnoitaleR between Follower-Weighted laicoS Mood and the Stock Market ............................................................... 77 5.4 Trading Strategy ................................................................................. 80 6.4 Conclusion .......................................................................................... 28 7.4 Appendix ............................................................................................. 58 elbaT of Contents XI 5 The Economic Impact of Privacy Violations and Security Breaches - A Laboratory Experiment .......... 98 Abstract ....................................................................................................... 89 1.5 Introduction ......................................................................................... 89 5.2 Related Work ...................................................................................... 19 5.3 Theoretical Background ...................................................................... 29 1.3.5 Privacy ..................................................................................... 29 5.3.2 Security .................................................................................... 39 5.3.3 Trust ......................................................................................... 59 5.4 Research Model .................................................................................. 69 5.5 Laboratory Experiment ....................................................................... 99 1.5.5 Method ..................................................................................... 99 5.5.2 Results ................................................................................... 201 5.5.3 Robustness Check .................................................................. 401 5.6 Discussion ......................................................................................... 501 1.6.5 yrammuS ................................................................................ 501 5.6.2 Limitations and Future Research ........................................... 601 7.5 xidneppA ........................................................................................... 801 6 Literature ............................................................................. 901 List of Figures Figure :1-2 ycneuqerF of snoitcasnarT per ,raeY htnoM dna yadkeeW ...... 91 Figure :2-2 ycneuqerF of snoitcasnarT per yaD of eht htnoM ..................... 02 Figure :1-3 tohsneercS of na Analyst's noitadnemmoceR ........................... 73 Figure :2-3 tnempoleveD of dradnatS noitaiveD of egA revo emiT ............ 55 Figure :3-3 tnempoleveD of eht egarevA egA revo emiT ........................... 65 Figure :4-3 tnempoleveD of redneG ytisreviD revo emiT ........................... 65 Figure :1-4 laciteroehT krowemarF ............................................................. 96 Figure :2-4 IMS dna IMSW seulaV revo emiT ........................................... 58 Figure :3-4 L&P Chart of gnidarT seigetartS neewteb enuJ ,1 3102 dna rebmevoN ,03 3102 ................................................................... 68 Figure :1-5 lautpecnoC krowemarF ............................................................. 79

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.