ebook img

The Theory of Symmetry Actions in Quantum Mechanics: with an Application to the Galilei Group PDF

114 Pages·2004·1.545 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Theory of Symmetry Actions in Quantum Mechanics: with an Application to the Galilei Group

Lecture Notes in Physics EditorialBoard R.Beig,Wien,Austria W.Beiglbo¨ck,Heidelberg,Germany W.Domcke,Garching,Germany B.-G.Englert,Singapore U.Frisch,Nice,France P.Ha¨nggi,Augsburg,Germany G.Hasinger,Garching,Germany K.Hepp,Zu¨rich,Switzerland W.Hillebrandt,Garching,Germany D.Imboden,Zu¨rich,Switzerland R.L.Jaffe,Cambridge,MA,USA R.Lipowsky,Golm,Germany H.v.Lo¨hneysen,Karlsruhe,Germany I.Ojima,Kyoto,Japan D.Sornette,Nice,France,andLosAngeles,CA,USA S.Theisen,Golm,Germany W.Weise,Garching,Germany J.Wess,Mu¨nchen,Germany J.Zittartz,Ko¨ln,Germany TheEditorialPolicyforMonographs The series Lecture Notes in Physics reports new developments in physical research and teaching-quickly,informally,andatahighlevel.Thetypeofmaterialconsideredforpub- licationincludesmonographspresentingoriginalresearchornewanglesinaclassicalfield. Thetimelinessofamanuscriptismoreimportantthanitsform,whichmaybepreliminary ortentative.Manuscriptsshouldbereasonablyself-contained.Theywilloftenpresentnot onlyresultsoftheauthor(s)butalsorelatedworkbyotherpeopleandwillprovidesufficient motivation,examples,andapplications. Acceptance The manuscripts or a detailed description thereof should be submitted either to one of the series editors or to the managing editor. The proposal is then carefully refereed. A finaldecisionconcerningpublicationcanoftenonlybemadeonthebasisofthecomplete manuscript,butotherwisetheeditorswilltrytomakeapreliminarydecisionasdefiniteas theycanonthebasisoftheavailableinformation. ContractualAspects Authorsreceivejointly30complimentarycopiesoftheirbook.NoroyaltyispaidonLecture NotesinPhysicsvolumes.ButauthorsareentitledtopurchasedirectlyfromSpringerother booksfromSpringer(excludingHagerandLandolt-Börnstein)ata331%discountoffthe 3 listprice.Resaleofsuchcopiesoroffreecopiesisnotpermitted.Commitmenttopublish ismadebyaletterofinterestratherthanbysigningaformalcontract.Springersecuresthe copyrightforeachvolume. ManuscriptSubmission Manuscriptsshouldbenolessthan100andpreferablynomorethan400pagesinlength. Final manuscripts should be in English. They should include a table of contents and an informativeintroductionaccessiblealsotoreadersnotparticularlyfamiliarwiththetopic treated.Authorsarefreetousethematerialinotherpublications.However,ifextensiveuse ismadeelsewhere,thepublishershouldbeinformed.Asaspecialservice,weofferfreeof chargeLATEXmacropackagestoformatthetextaccordingtoSpringer’squalityrequirements. Westronglyrecommendauthorstomakeuseofthisoffer,astheresultwillbeabookof considerably improved technical quality. The books are hardbound, and quality paper appropriatetotheneedsoftheauthor(s)isused.Publicationtimeisabouttenweeks.More thantwentyyearsofexperienceguaranteeauthorsthebestpossibleservice. LNPHomepage(springerlink.com) OntheLNPhomepageyouwillfind: −TheLNPonlinearchive.Itcontainsthefulltexts(PDF)ofallvolumespublishedsince 2000.Abstracts,tableofcontentsandprefacesareaccessiblefreeofchargetoeveryone. Informationabouttheavailabilityofprintedvolumescanbeobtained. −Thesubscriptioninformation.Theonlinearchiveisfreeofchargetoallsubscribersof theprintedvolumes. −Theeditorialcontacts,withrespecttobothscientificandtechnicalmatters. −Theauthor’s/editor’sinstructions. G. Cassinelli, E. De Vito, P. J. Lahti, A. Levrero The Theory of Symmetry Actions in Quantum Mechanics with an Application to the Galilei Group 123 Authors GianniCassinelli PekkaJ.Lahti UniversitadiGenova UniversityofTurku DipartimentodiFisica DepartmentofPhysics 16146Genova,Italy 20014Turku,Finland ErnestoDeVito AlbertoLevrero DipartimentodiMatematica UniversitadiGenova PuraedApplicata"G.Vitali" DipartimentodiFisica 41000Modena,Italy 16146Genova,Italy G. Cassinelli, E. De Vito, P. J. Lahti, A. Levrero, The Theory of Symmetry Actions in Quantum Mechanics, Lect. Notes Phys. 654 (Springer, Berlin Heidelberg 2004), DOI 10.1007/b99455 LibraryofCongressControlNumber:2004110193 ISSN0075-8450 ISBN3-540-22802-0SpringerBerlinHeidelbergNewYork Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthe material is concerned, specifically the rights of translation, reprinting, reuse of illustra- tions, recitation, broadcasting, reproduction on microfilm or in any other way, and storageindatabanks.Duplicationofthispublicationorpartsthereofispermittedonly under the provisions of the German Copyright Law of September 9, 1965, in its cur- rentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violations areliabletoprosecutionundertheGermanCopyrightLaw. SpringerisapartofSpringerScience+BusinessMedia springeronline.com ©Springer-VerlagBerlinHeidelberg2004 PrintedinGermany Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Typesetting:Camera-readybytheauthors/editor Dataconversion:PTP-BerlinProtago-TeX-ProductionGmbH Coverdesign:design&production,Heidelberg Printedonacid-freepaper 54/3141/ts-543210 Lecture Notes in Physics ForinformationaboutVols.1–607 pleasecontactyourbooksellerorSpringer LNPOnlinearchive:springerlink.com Vol.608:F.Courbin,D.Minniti(Eds.),Gravitational Vol.633:H.-T.Elze(Ed.),DecoherenceandEntropyin Lensing:AnAstrophysicalTool. ComplexSystems,BasedonSelectedLecturesfrom Vol.609:T.Henning(Ed.),Astromineralogy. DICE2002 Vol.610:M.Ristig,K.Gernoth(Eds.),ParticleScat- Vol.634:R.Haberlandt,D.Michel,A.Po¨ppl,R.Stan- tering, X-Ray Diffraction, and Microstructure of narius(Eds.),MoleculesinInteractionwithSurfaces SolidsandLiquids. andInterfaces Vol.611:A.Buchleitner,K.Hornberger(Eds.),Coher- Vol.635:D.Alloin,W.Gieren(Eds.),StellarCandles entEvolutioninNoisyEnvironments. fortheExtragalacticDistanceScale Vol.612:L.Klein,(Ed.),EnergyConversionandPar- Vol.636:R.Livi,A.Vulpiani(Eds.),TheKolmogorov ticleAccelerationintheSolarCorona. Legacy in Physics, A Century of Turbulence and Vol.613:K.Porsezian,V.C.Kuriakose(Eds.),Optical Complexity Solitons.TheoreticalandExperimentalChallenges. Vol.637:I.Mu¨ller,P.Strehlow,RubberandRubber Vol.614:E.Falgarone,T.Passot(Eds.),Turbulence Balloons,ParadigmsofThermodynamics andMagneticFieldsinAstrophysics. Vol.638:Y.Kosmann-Schwarzbach,B.Grammaticos, Vol.615: J. Bu¨chner, C.T. Dum, M. Scholer (Eds.), K.M.Tamizhmani(Eds.),IntegrabilityofNonlinear SpacePlasmaSimulation. Systems Vol.616:J.Trampetic,J.Wess(Eds.),ParticlePhysics Vol.639:G.Ripka,DualSuperconductorModelsof intheNewMillenium. ColorConfinement Vol.617: L. Ferna´ndez-Jambrina, L. M. Gonza´lez- Vol.640:M.Karttunen,I.Vattulainen,A.Lukkarinen Romero(Eds.),CurrentTrendsinRelativisticAstro- (Eds.),NovelMethodsinSoftMatterSimulations physics,Theoretical,Numerical,Observational Vol.641: A. Lalazissis, P. Ring, D. Vretenar (Eds.), Vol.618:M.D.Esposti,S.Graffi(Eds.),TheMathe- ExtendedDensityFunctionalsinNuclearStructure maticalAspectsofQuantumMaps Physics Vol.619:H.M.Antia,A.Bhatnagar,P.Ulmschneider Vol.642:W.Hergert,A.Ernst,M.Da¨ne(Eds.),Com- (Eds.),LecturesonSolarPhysics putationalMaterialsScience Vol.620:C.Fiolhais,F.Nogueira,M.Marques(Eds.), Vol.643:F.Strocchi,SymmetryBreaking APrimerinDensityFunctionalTheory Vol.644:B.Grammaticos,Y.Kosmann-Schwarzbach, Vol.621: G. Rangarajan, M. Ding (Eds.), Processes T.Tamizhmani(Eds.)DiscreteIntegrableSystems withLong-RangeCorrelations Vol.622:F.Benatti,R.Floreanini(Eds.),Irreversible Vol.645:U.Schollwöck,J.Richter,D.J.J.Farnell,R.F. QuantumDynamics Bishop(Eds.),QuantumMagnetism Vol.623:M.Falcke,D.Malchow(Eds.),Understand- Vol.646:N.Breto´n,J.L.Cervantes-Cota,M.Salgado ingCalciumDynamics,ExperimentsandTheory (Eds.),TheEarlyUniverseandObservationalCos- mology Vol.624:T.Pöschel(Ed.),GranularGasDynamics Vol.647:D.Blaschke,M.A.Ivanov,T.Mannel(Eds.), Vol.625:R.Pastor-Satorras,M.Rubi,A.Diaz-Guilera HeavyQuarkPhysics (Eds.),StatisticalMechanicsofComplexNetworks Vol.626:G.Contopoulos,N.Voglis(Eds.),Galaxies Vol.648:S.G.Karshenboim,E.Peik(Eds.),Astro- andChaos physics,ClocksandFundamentalConstants Vol.627:S.G.Karshenboim,V.B.Smirnov(Eds.),Pre- Vol.649:M.Paris,J.Rehacek(Eds.),QuantumState cisionPhysicsofSimpleAtomicSystems Estimation Vol.628:R.Narayanan,D.Schwabe(Eds.),Interfacial Vol.650:E.Ben-Naim,H.Frauenfelder,Z.Toroczkai FluidDynamicsandTransportProcesses (Eds.),ComplexNetworks Vol.629:U.-G.Meißner,W.Plessas(Eds.),Lectures Vol.651: J.S. Al-Khalili, E. Roeckl (Eds.), The Eu- onFlavorPhysics roschoolLecturesofPhysicswithExoticBeams,Vol.I Vol.630:T.Brandes,S.Kettemann(Eds.),Anderson Vol.652:J.Arias,M.Lozano(Eds.),ExoticNuclear LocalizationandItsRamifications Physics Vol.631:D.J.W.Giulini,C.Kiefer,C.La¨mmerzahl Vol.653:E.Papantonoupoulos(Ed.),ThePhysicsof (Eds.),QuantumGravity,FromTheorytoExperi- theEarlyUniverse mentalSearch Vol.654: G. Cassinelli, A. Levrero, E. de Vito, P. J. Vol.632:A.M.Greco(Ed.),DirectandInverseMeth- Lahti(Eds.),TheoryandAppplicationtotheGalileo odsinNonlinearEvolutionEquations Group Preface This book is devoted to the study of the symmetries in quantum mechanics. Inmanyelementaryexpositionsofquantumtheory,oneofthebasicassump- tions is that a group G of transformations is a group of symmetries for a quantumsystemifGadmitsaunitaryrepresentationU actingontheHilbert space H associated with the system. The requirement that, given g ∈G, the corresponding operator U is unitary is motived by the need for preserving g the transition probability between any two vector states ϕ,ψ ∈H, |(cid:2)ϕ,U ψ(cid:3)|2 =|(cid:2)ϕ,ψ(cid:3)|2. (0.1) g The composition law U =U U (0.2) g1g2 g1 g2 encodes the assumption that the physical symmetries form a group of trans- formations on the set of vector states. However, as soon as one considers some explicit application, the above frameworkappearstoorestrictive.Forexample,itiswellknownthatthewave function ϕ of an electron changes its sign under a rotation of 2π; the Dirac equation is not invariant under the Poincar´e group, but under its universal coveringgroup;theSchro¨dingerequationisinvariantneitherundertheGalilei group nor under its universal covering group. The above pathologies have important physical consequences: bosons and fermions can not be coherently superposed, the canonical position and mo- mentum observables of a Galilei invariant particle do not commute and par- ticles with different mass cannot be coherently superposed. For the Poincar´e group the above problem was first solved by Wigner in his seminal paper [40] and it was systematically studied by Bargmann, [1], and Mackey, [27] (see, also, the book of Varadarajan, [35], for a detailed exposition of the theory). These authors clarified that in order to preserve (0.1), one only has to require that U be either unitary or antiunitary and (0.2) can be replaced by the weaker condition U =m(g ,g )U U , (0.3) g1g2 1 2 g1 g2 VIII Preface where m(g ,g ) is a complex number of modulo one (U is said to be a pro- 1 2 jective representation). Moreover, they showed that the study of projective representations can be reduced to the theory of ordinary unitary representa- tionsbyenlargingthephysicalgroupofsymmetries.Forexample,therotation group SO(3) has to be replaced by its universal covering group SU(2). The trick of replacing the physical symmetry group G with its universal covering groupG∗ issowellknowninthephysicscommunitythatthegroupG∗ itself is considered as the true physical symmetry group. However, for the Galilei groupthecoveringgroupisnotenoughandoneneedsevenalargergroupG, namely the universal central extension, in order that the unitary (ordinary) representations of G exhaust all the possible projective representations of G. Theaimofthisbookistopresentthetheoryneededtoconstructtheuni- versalcentralextensionfromthephysicalsymmetrygroupinaunified,simple and mathematically coherent way. Most of the results presented are known. However, we hope that our exposition will help the reader to understand the role of the mathematical objects that are introduced in order to take care of the true projective character of the representations in quantum mechanics. Finally,ourconstructionofGisveryexplicitandcanbeperformedbysimple linear algebraic tools. This theory is presented in Chap. 3. Coming back to (0.1), this equality means that we regard symmetries as mathematical objects that preserve the transition probability between pure states.Thestructureoftransitionprobabilityisonlyoneofthevariousphys- ically relevant structures associated with a quantum system. Other relevant structures being, for instance, the convex structures of the sets of states and effects, the order structure of effects, and the algebraic structure of observ- ables. Therefore it is natural to define symmetry as a bijective map that preserves one of these structures. In Chap. 2 we present several possibilities of modeling a symmetry and we show that they all coincide. Hence one may speakofsymmetriesofaquantumsystem.Thesetofallpossiblesymmetries forms a topological group Σ and, given a group G, a symmetry action is defined as a continuous map σ from G to Σ such that σ =σ σ . g1g2 g1 g1 As an application of these ideas, in Chaps. 4 and 5 we treat in full detail the case of the Galilei group both in 3+1 and in 2+1 dimensions. The choice of the Galilei group instead of the Poincar´e group is motivated first of all by the fact that the Poincar´e group has already been extensively studied in the literature. Secondly, from a mathematical point of view, the Galilei group shows all the pathologies cited above and one needs the full theory of projective representations. We also treat the 2+1 dimensional case since thereisanincreasinginterestinthesurfacephenomenabothfromtheoretical and from experimental points of view. The last chapter of the book is devoted to the study of Galilei invariant wave equations. Within the framework of the first quantisation, the need for wave equations naturally arises if one introduces the interaction of a particle Preface IX with a (classical) electromagnetic field by means of the minimal coupling principle. To this aim, one has to describe the vector states as functions on the space-time satisfying a differential equation, the wave equation, which is invariant with respect to the universal central extension of the Galilei group. In Chap. 6 we describe how these wave equations can be obtained without using Lagrangian (classical) techniques. In particular, we prove that for a particle of spin j there exists a linear wave equation, like the Dirac equation forthePoincar´egroup,suchthattheparticleacquiresagyromagneticinternal moment with the gyromagnetic ratio 1. j Since the book is devoted to the application of the abstract theory to the Galilei group, we always assume that the symmetry group G is a connected Lie group. In particular, we do not consider the problem of discrete symme- tries. In the Appendix we recall some basic mathematical definitions, facts, and theorems needed in this book. The reader will find them as entries in the Dictionary of Mathematical Notions in the Appendix. The statement of definitions and results are usually not given in their full generality but they are adjusted to our needs. Contents 1 A Synopsis of Quantum Mechanics ....................... 1 1.1 The Set S of States and the Set P of Pure States ........... 2 1.2 The Set E of Effects and the Set D of Projections........... 3 1.3 Observables ............................................ 5 2 The Automorphism Group of Quantum Mechanics ....... 7 2.1 Automorphism Groups of Quantum Mechanics ............. 7 2.1.1 State Automorphisms ............................. 7 2.1.2 Vector State Automorphisms ....................... 9 2.1.3 Effect Automorphisms............................. 11 2.1.4 Automorphisms on D ............................. 14 2.1.5 Automorphisms of H .............................. 18 2.2 The Wigner Theorem.................................... 19 2.2.1 The Theorem..................................... 19 2.3 The Group Isomorphisms ................................ 23 2.3.1 Isomorphisms .................................... 23 2.3.2 Homeomorphisms................................. 24 2.3.3 The Automorphism Group of Quantum Mechanics .... 25 3 The Symmetry Actions and Their Representations ....... 27 3.1 Symmetry Actions of a Lie Group......................... 28 3.2 Multipliers for Lie Groups................................ 31 3.3 Universal Central Extension of a Connected Lie Group ...... 33 3.4 The Physical Equivalence for Semidirect Products........... 42 3.5 An Example: The Temporal Evolution of a Closed System ... 46 4 The Galilei Groups ....................................... 49 4.1 The 3+1 Dimensional Case.............................. 49 4.1.1 Physical Interpretation ............................ 50 4.1.2 The Covering Group .............................. 50 4.1.3 The Lie Algebra .................................. 51 4.1.4 The Multipliers for the Covering Group.............. 52 4.1.5 The Universal Central Extension.................... 53 4.2 The 2+1 Dimensional Case.............................. 56 XII Contents 4.2.1 The Multipliers for the Covering Group and the Universal Central Extension ................ 56 5 Galilei Invariant Elementary Particles .................... 61 5.1 The Relativity Principle for Isolated Systems ............... 61 5.1.1 Galilei Systems in Interaction ...................... 63 5.2 Symmetry Actions in 3+1 Dimensions .................... 64 5.2.1 The Dual Group and the Dual Action ............... 64 5.2.2 The Orbits and the Orbit Classes ................... 65 5.2.3 Representations Arising from O(cid:1)1 ................... 66 m 5.2.4 Representations Arising from the Orbit Class O(cid:1)2 ..... 66 r 5.2.5 Representations Arising from the Orbit Class O(cid:1)3 ..... 69 5.3 Symmetry Actions in 2+1 Dimensions .................... 69 5.3.1 Unitary Irreducible Representations of G ............ 69 6 Galilei Invariant Wave Equations ........................ 73 6.1 Wave Equations ........................................ 74 6.2 The 3+1 Dimensional Case.............................. 78 6.2.1 The Gyromagnetic Ratio........................... 83 6.3 The 2+1 Dimensional Case.............................. 84 6.4 Finite Dimensional Representations of the Euclidean Group .. 86 Appendix..................................................... 89 A.1 Dictionary of Mathematical Notions....................... 89 A.2 The Group of Automorphisms of a Hilbert Space............ 99 A.3 Induced Representation.................................. 100 References.................................................... 103 List of Frequently Occurring Symbols......................... 105 Index......................................................... 109

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.