Table Of ContentCAMBRIDGE TRACTS IN MATHEMATICS
GeneralEditors
B. BOLLOBA´ S, W. FULTON, A. KATOK,
F. KIRWAN, P. SARNAK, B. SIMON, B. TOTARO
196 TheTheoryofHardy’sZ-Function
CAMBRIDGE TRACTS IN MATHEMATICS
GENERAL EDITORS
B.BOLLOBA´S,W.FULTON,A.KATOK,F.KIRWAN,P.SARNAK,
B.SIMON,B.TOTARO
Acompletelistofbooksintheseriescanbefoundatwww.cambridge.org/mathematics.
Recenttitlesincludethefollowing:
163. LinearandProjectiveRepresentationsofSymmetricGroups.ByA.Kleshchev
164. TheCoveringPropertyAxiom,CPA.ByK.CiesielskiandJ.Pawlikowski
165. ProjectiveDifferentialGeometryOldandNew.ByV.OvsienkoandS.Tabachnikov
166. TheLe´vyLaplacian.ByM.N.Feller
167. Poincare´DualityAlgebras,Macaulay’sDualSystems,andSteenrodOperations.
ByD.MeyerandL.Smith
168. TheCube-AWindowtoConvexandDiscreteGeometry.ByC.Zong
169. QuantumStochasticProcessesandNoncommutativeGeometry.ByK.B.Sinhaand
D.Goswami
170. PolynomialsandVanishingCycles.ByM.Tiba˘r
171. OrbifoldsandStringyTopology.ByA.Adem,J.Leida,andY.Ruan
172. RigidCohomology.ByB.LeStum
173. EnumerationofFiniteGroups.ByS.R.Blackburn,P.M.Neumann,and
G.Venkataraman
174. ForcingIdealized.ByJ.Zapletal
175. TheLargeSieveanditsApplications.ByE.Kowalski
176. TheMonsterGroupandMajoranaInvolutions.ByA.A.Ivanov
177. AHigher-DimensionalSieveMethod.ByH.G.Diamond,H.Halberstam,and
W.F.Galway
178. AnalysisinPositiveCharacteristic.ByA.N.Kochubei
179. DynamicsofLinearOperators.ByF.BayartandE´.Matheron
180. SyntheticGeometryofManifolds.ByA.Kock
181. TotallyPositiveMatrices.ByA.Pinkus
182. NonlinearMarkovProcessesandKineticEquations.ByV.N.Kolokoltsov
183. PeriodDomainsoverFiniteandp-adicFields.ByJ.-F.Dat,S.Orlik,and
M.Rapoport
184. AlgebraicTheories.ByJ.Ada´mek,J.Rosicky´,andE.M.Vitale
185. RigidityinHigherRankAbelianGroupActionsI:IntroductionandCocycleProblem.
ByA.KatokandV.Nit¸ica˘
186. Dimensions,Embeddings,andAttractors.ByJ.C.Robinson
187. Convexity:AnAnalyticViewpoint.ByB.Simon
188. ModernApproachestotheInvariantSubspaceProblem.ByI.Chalendarand
J.R.Partington
189. NonlinearPerronFrobeniusTheory.ByB.LemmensandR.Nussbaum
190. JordanStructuresinGeometryandAnalysis.ByC.-H.Chu
191. MalliavinCalculusforLe´vyProcessesandInfinite-DimensionalBrownianMotion.
ByH.Osswald
192. NormalApproximationswithMalliavinCalculus.ByI.NourdinandG.Peccati
193. DistributionModuloOneandDiophantineApproximation.ByY.Bugeaud
194. MathematicsofTwo-DimensionalTurbulence.ByS.KuksinandA.Shirikyan
195. AUniversalConstructionforR-freeGroups.ByI.ChiswellandT.Mu¨ller
196. TheTheoryofHardy’sZ-Function.ByA.Ivic´
197. InducedRepresentationsofLocallyCompactGroups.ByE.KaniuthandK.F.Taylor
198. TopicsinCriticalPointTheory.ByK.PereraandM.Schechter
199. CombinatoricsofMinusculeRepresentations.ByR.M.Green
200. SingularitiesoftheMinimalModelProgram.ByJ.Kolla´r
G.H.Hardy,1877-1947
The Theory of Hardy’s Z-Function
ALEKSANDAR IVIC´
UniverzitetuBeogradu,Serbia
cambridge university press
Cambridge,NewYork,Melbourne,Madrid,CapeTown,
Singapore,Sa˜oPaulo,Delhi,MexicoCity
CambridgeUniversityPress
TheEdinburghBuilding,CambridgeCB28RU,UK
PublishedintheUnitedStatesofAmericabyCambridgeUniversityPress,NewYork
www.cambridge.org
Informationonthistitle:www.cambridge.org/9781107028838
(cid:2)C AleksandarIvic´2013
Frontispiece:G.H.Hardy.KindlysuppliedbyTrinityCollege,Cambridge
Thispublicationisincopyright.Subjecttostatutoryexception
andtotheprovisionsofrelevantcollectivelicensingagreements,
noreproductionofanypartmaytakeplacewithoutthewritten
permissionofCambridgeUniversityPress.
Firstpublished2013
PrintedandboundintheUnitedKingdombytheMPGBooksGroup
AcatalogrecordforthispublicationisavailablefromtheBritishLibrary
LibraryofCongressCataloguinginPublicationdata
Ivic,A.,1949–author.
ThetheoryofHardy’sZ-function/AleksandarIvic.
pages cm.–(Cambridgetractsinmathematics;196)
Includesbibliographicalreferencesandindex.
ISBN978-1-107-02883-8(hardback)
1.Numbertheory. I.Title.
QA241.I83 2012
512.7–dc23 2012024804
ISBN978-1-107-02883-8Hardback
CambridgeUniversityPresshasnoresponsibilityforthepersistenceor
accuracyofURLsforexternalorthird-partyinternetwebsitesreferredto
inthispublication,anddoesnotguaranteethatanycontentonsuch
websitesis,orwillremain,accurateorappropriate.
Contents
Preface pagexi
Notation xv
1 Definitionofζ(s),Z(t)andbasicnotions 1
1.1 Thebasicnotions 1
1.2 Thefunctionalequationforζ(s) 3
1.3 PropertiesofHardy’sfunction 6
1.4 Thedistributionofzeta-zeros 8
Notes 14
2 Thezerosonthecriticalline 21
2.1 Theinfinityofzerosonthecriticalline 21
2.2 Alowerboundforthemeanvalues 23
2.3 Lehmer’sphenomenon 25
2.4 Gapsbetweenconsecutivezerosonthecriticalline 28
Notes 41
3 TheSelbergclassof L-functions 49
3.1 TheaxiomsofSelberg’sclass 49
3.2 TheanalogsofHardy’sandLindelo¨f’sfunctionforS 51
3.3 Thedegreed andtheinvariantsofS 52
F
3.4 ThezerosoffunctionsinS 56
Notes 57
4 Theapproximatefunctionalequationsforζk(s) 61
4.1 AsimpleAFEforζ(s) 61
4.2 TheRiemann-Siegelformula 63
4.3 TheAFEforthepowersofζ(s) 70
vii
viii Contents
4.4 Thereflectionprinciple 84
4.5 TheAFEswithsmoothweights 87
Notes 94
5 Thederivativesof Z(t) 99
5.1 Theθ and(cid:4)functions 99
5.2 Theformulaforthederivatives 101
Notes 106
6 Grampoints 109
6.1 DefinitionandorderofGrampoints 109
6.2 Gram’slaw 112
6.3 Ameanvalueresult 115
Notes 120
7 ThemomentsofHardy’sfunction 123
7.1 Theasymptoticformulaforthemoments 123
7.2 Remarks 130
Notes 132
8 TheprimitiveofHardy’sfunction 135
8.1 Introduction 135
8.2 TheLaplacetransformofHardy’sfunction 138
8.3 ProofofTheorem8.2 142
8.4 ProofofTheorem8.3 150
Notes 153
9 TheMellintransformsofpowersof Z(t) 157
9.1 Introduction 157
9.2 SomepropertiesofthemodifiedMellintransforms 159
9.3 AnalyticcontinuationofM (s) 164
k
Notes 172
10 FurtherresultsonM (s)andZ (s) 176
k k
10.1 SomerelationsforM (s) 176
k
10.2 MeansquareidentitiesforM (s) 180
k
10.3 EstimatesforM (s) 186
k
10.4 Naturalboundaries 198
Notes 201
11 OnsomeproblemsinvolvingHardy’sfunctionand
zeta-moments 206
11.1 ThedistributionofvaluesofHardy’sfunction 206