ebook img

The Theory of Hardy's Z-Function PDF

266 Pages·2012·1.283 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Theory of Hardy's Z-Function

CAMBRIDGE TRACTS IN MATHEMATICS GeneralEditors B. BOLLOBA´ S, W. FULTON, A. KATOK, F. KIRWAN, P. SARNAK, B. SIMON, B. TOTARO 196 TheTheoryofHardy’sZ-Function CAMBRIDGE TRACTS IN MATHEMATICS GENERAL EDITORS B.BOLLOBA´S,W.FULTON,A.KATOK,F.KIRWAN,P.SARNAK, B.SIMON,B.TOTARO Acompletelistofbooksintheseriescanbefoundatwww.cambridge.org/mathematics. Recenttitlesincludethefollowing: 163. LinearandProjectiveRepresentationsofSymmetricGroups.ByA.Kleshchev 164. TheCoveringPropertyAxiom,CPA.ByK.CiesielskiandJ.Pawlikowski 165. ProjectiveDifferentialGeometryOldandNew.ByV.OvsienkoandS.Tabachnikov 166. TheLe´vyLaplacian.ByM.N.Feller 167. Poincare´DualityAlgebras,Macaulay’sDualSystems,andSteenrodOperations. ByD.MeyerandL.Smith 168. TheCube-AWindowtoConvexandDiscreteGeometry.ByC.Zong 169. QuantumStochasticProcessesandNoncommutativeGeometry.ByK.B.Sinhaand D.Goswami 170. PolynomialsandVanishingCycles.ByM.Tiba˘r 171. OrbifoldsandStringyTopology.ByA.Adem,J.Leida,andY.Ruan 172. RigidCohomology.ByB.LeStum 173. EnumerationofFiniteGroups.ByS.R.Blackburn,P.M.Neumann,and G.Venkataraman 174. ForcingIdealized.ByJ.Zapletal 175. TheLargeSieveanditsApplications.ByE.Kowalski 176. TheMonsterGroupandMajoranaInvolutions.ByA.A.Ivanov 177. AHigher-DimensionalSieveMethod.ByH.G.Diamond,H.Halberstam,and W.F.Galway 178. AnalysisinPositiveCharacteristic.ByA.N.Kochubei 179. DynamicsofLinearOperators.ByF.BayartandE´.Matheron 180. SyntheticGeometryofManifolds.ByA.Kock 181. TotallyPositiveMatrices.ByA.Pinkus 182. NonlinearMarkovProcessesandKineticEquations.ByV.N.Kolokoltsov 183. PeriodDomainsoverFiniteandp-adicFields.ByJ.-F.Dat,S.Orlik,and M.Rapoport 184. AlgebraicTheories.ByJ.Ada´mek,J.Rosicky´,andE.M.Vitale 185. RigidityinHigherRankAbelianGroupActionsI:IntroductionandCocycleProblem. ByA.KatokandV.Nit¸ica˘ 186. Dimensions,Embeddings,andAttractors.ByJ.C.Robinson 187. Convexity:AnAnalyticViewpoint.ByB.Simon 188. ModernApproachestotheInvariantSubspaceProblem.ByI.Chalendarand J.R.Partington 189. NonlinearPerronFrobeniusTheory.ByB.LemmensandR.Nussbaum 190. JordanStructuresinGeometryandAnalysis.ByC.-H.Chu 191. MalliavinCalculusforLe´vyProcessesandInfinite-DimensionalBrownianMotion. ByH.Osswald 192. NormalApproximationswithMalliavinCalculus.ByI.NourdinandG.Peccati 193. DistributionModuloOneandDiophantineApproximation.ByY.Bugeaud 194. MathematicsofTwo-DimensionalTurbulence.ByS.KuksinandA.Shirikyan 195. AUniversalConstructionforR-freeGroups.ByI.ChiswellandT.Mu¨ller 196. TheTheoryofHardy’sZ-Function.ByA.Ivic´ 197. InducedRepresentationsofLocallyCompactGroups.ByE.KaniuthandK.F.Taylor 198. TopicsinCriticalPointTheory.ByK.PereraandM.Schechter 199. CombinatoricsofMinusculeRepresentations.ByR.M.Green 200. SingularitiesoftheMinimalModelProgram.ByJ.Kolla´r G.H.Hardy,1877-1947 The Theory of Hardy’s Z-Function ALEKSANDAR IVIC´ UniverzitetuBeogradu,Serbia cambridge university press Cambridge,NewYork,Melbourne,Madrid,CapeTown, Singapore,Sa˜oPaulo,Delhi,MexicoCity CambridgeUniversityPress TheEdinburghBuilding,CambridgeCB28RU,UK PublishedintheUnitedStatesofAmericabyCambridgeUniversityPress,NewYork www.cambridge.org Informationonthistitle:www.cambridge.org/9781107028838 (cid:2)C AleksandarIvic´2013 Frontispiece:G.H.Hardy.KindlysuppliedbyTrinityCollege,Cambridge Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2013 PrintedandboundintheUnitedKingdombytheMPGBooksGroup AcatalogrecordforthispublicationisavailablefromtheBritishLibrary LibraryofCongressCataloguinginPublicationdata Ivic,A.,1949–author. ThetheoryofHardy’sZ-function/AleksandarIvic. pages cm.–(Cambridgetractsinmathematics;196) Includesbibliographicalreferencesandindex. ISBN978-1-107-02883-8(hardback) 1.Numbertheory. I.Title. QA241.I83 2012 512.7–dc23 2012024804 ISBN978-1-107-02883-8Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceor accuracyofURLsforexternalorthird-partyinternetwebsitesreferredto inthispublication,anddoesnotguaranteethatanycontentonsuch websitesis,orwillremain,accurateorappropriate. Contents Preface pagexi Notation xv 1 Definitionofζ(s),Z(t)andbasicnotions 1 1.1 Thebasicnotions 1 1.2 Thefunctionalequationforζ(s) 3 1.3 PropertiesofHardy’sfunction 6 1.4 Thedistributionofzeta-zeros 8 Notes 14 2 Thezerosonthecriticalline 21 2.1 Theinfinityofzerosonthecriticalline 21 2.2 Alowerboundforthemeanvalues 23 2.3 Lehmer’sphenomenon 25 2.4 Gapsbetweenconsecutivezerosonthecriticalline 28 Notes 41 3 TheSelbergclassof L-functions 49 3.1 TheaxiomsofSelberg’sclass 49 3.2 TheanalogsofHardy’sandLindelo¨f’sfunctionforS 51 3.3 Thedegreed andtheinvariantsofS 52 F 3.4 ThezerosoffunctionsinS 56 Notes 57 4 Theapproximatefunctionalequationsforζk(s) 61 4.1 AsimpleAFEforζ(s) 61 4.2 TheRiemann-Siegelformula 63 4.3 TheAFEforthepowersofζ(s) 70 vii viii Contents 4.4 Thereflectionprinciple 84 4.5 TheAFEswithsmoothweights 87 Notes 94 5 Thederivativesof Z(t) 99 5.1 Theθ and(cid:4)functions 99 5.2 Theformulaforthederivatives 101 Notes 106 6 Grampoints 109 6.1 DefinitionandorderofGrampoints 109 6.2 Gram’slaw 112 6.3 Ameanvalueresult 115 Notes 120 7 ThemomentsofHardy’sfunction 123 7.1 Theasymptoticformulaforthemoments 123 7.2 Remarks 130 Notes 132 8 TheprimitiveofHardy’sfunction 135 8.1 Introduction 135 8.2 TheLaplacetransformofHardy’sfunction 138 8.3 ProofofTheorem8.2 142 8.4 ProofofTheorem8.3 150 Notes 153 9 TheMellintransformsofpowersof Z(t) 157 9.1 Introduction 157 9.2 SomepropertiesofthemodifiedMellintransforms 159 9.3 AnalyticcontinuationofM (s) 164 k Notes 172 10 FurtherresultsonM (s)andZ (s) 176 k k 10.1 SomerelationsforM (s) 176 k 10.2 MeansquareidentitiesforM (s) 180 k 10.3 EstimatesforM (s) 186 k 10.4 Naturalboundaries 198 Notes 201 11 OnsomeproblemsinvolvingHardy’sfunctionand zeta-moments 206 11.1 ThedistributionofvaluesofHardy’sfunction 206

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.