ebook img

The Theory Of Functions Of A Complex Variable PDF

344 Pages·1982·16.74 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Theory Of Functions Of A Complex Variable

R r A. G. SVESHNOKOV. A. N. TIKHONOV MIR PUBLISHERS A. r. CBEIDHHHOB, A. H. THXOHOB TEOPMH <I>YHRI.Vll1: ROMllJIERCH011: llEPEMEHH011: H3.ll:ATEJlbCTBO «HAYHA>> A. G. SVESHNIKOV and A. N. TIKHONOV THE THEORY OF FUNCTIONS OF A COMPLEX VARIABLE Translated from the Russian by GEORGE YANKOVSKY MIR PUBLISHERS · MOSCOW First published 1971 Second printing 1973 Second edition 1978 Second edition, second printing 1982 @ liaAaTeJILCTBO cHayKU, 1974, C IIBMeReRHRMH © English translation, Mir Publishers, 1978 CONTENTS Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Chapter 1. THE COMPLEX VARIABLE AND FUNCTIONS OF A COMPLEX VARIABLE 11 1.1. Complex Numbers and Operations on Complex Numbers H a. The concept of a complex number . . . . . . . . 11 b. Operations on complex numbers . . . . . . . . . 11 c. The geometric interpretation of complex numbers . 13 d. Extracting the root of a complex number 15 1.2. The Limit of a Sequence of Complex Numbers 17 a. The definition of a convergent sequence . 17 b. Cauchy's test . . . . . . . . . . . . • 19 c. Point at infinity • . . . . . . . • . . 1!} 1.3. The Concept of a Function of a Complex Variable. Continuity 20 a. Basic definitions 20 b. Continuity . . . . . . . . . . . . . . . 23 c. Examples . . . . • . . . . . . . . . . . 26 1.~. Ditlerentiating the Function of a Complex Variable 30 a. Definition. Cauchy-Riemann conditions •.. 30 b. Properties of analytic functions . . . . . . . . . . . 33 c. The geometric meaning of the derivative of a function of a complex variable . . . . . . . . . . . 35 d. Examples . . . . . . . . . . . . . . 37 ·1.5. An Integral with Respect to a Complex Variable 38 a. Basic properties . 38 b. Cauchy's Theorem 41 c. Indefinite integral . 44 1.6. Cauchy's Integral . . 47 a. Deriving Cauchy's formula .. 47 b. Corollaries to Cauchy's formula . . . . . . . . . . . 50 c. The maximum-modulus principle of an analytic function 51 t . 7. Integrals Dependent on a Parameter . • . . . . . . . . . 53 a. Analytic dependence on a parameter . . . . . . . . . . 53 b. An analytic function and the existence of derivatives of all orders • . . . • • . . • • • • • . 55 Chapter 2. SERIES OF ANALYTIC FUNCTIONS • 58 2.1. Uniformly Convergent Series of Functions of a Complex Variable .........•............. 58 6 Contents a. Number series . . . . . . . . . . . . . 58 b. Functional series. Uniform convergence . . 59 c. Properties of uniformly convergent series. Weierstrass' theorems . . . . . . . . . . 62 d. Improper integrals dependent on a parameter 66 2.2. Power Series. Taylor's Series 67 a. Abel's theorem .. 67 b. Taylor's series . . 72 c. Examples 74 2.3. Uniqueness of Definition of an Anal)1ic Function 76 a. Zeros of an analytic function 76 b. Uniqueness theorem . . . . . . . . . • • . 77 Chapter 3. ANALYTIC CONTINUATION. ELEMENTARY FUNCTIONS OF A COMPLEX VARIABLE 80 3.t. Elementary Functions of a Complex Variable. Continuation from the Real Axis . . . . . . . . . . . • . . . . . . 80 a. Continuation from the real axis . 80 b. Continuation of relations . . . . 84 c. Properties of elementary functions 87 d. Mappings of elementary functions 91 3.2. Analytic Continuation. The Riemann Surface • 95 a. Basic principles. The concept of a Riemann surface 95 b. Analytic continuation across a boundary . . . . . . . . 98 c. Examples in constructing analytic continuations. Con- tinuation across a boundary . . . . . . . . . . . . . 100 d. Examples in constructing analytic continuations. Con- tinuation by means of power series . . . . . . . . . . 105 e. Regular and singular points of an analytic function . . . 108 f. The concept of a complete analytic function . . . • . . 111 Chapter 4. THE LAURENT SERIES AND ISOLATED SINGULAR POINTS . . . . . . . . . . . • . . . . . • 113 4.1. The Laurent Series . . . . . . . . . • . . . . . • • 113 a. The domain of convergence of a Laurent series . . . 113 h. Expansion of an analytic function in a Laurent series t 15 4.2. A Classification of the Isolated Singular Points of a Single- Valued Analytic Function . . . . . . . . 118 Chapter 5. RESIDUES AND THEIR APPLICATIONS . • • • . • • 125 5.t. The Residue of an Analytic Function at an Isolated Singu- larity . . . . . . . . . . . . . . . . . . . .. • . . . 125 a. Definition of a residue. Formulas for evaluating residues 125 b. The residue theorem . . . . . . . . . . . . 127 5.2. Evaluation of Definite Integrals by !\leans of Residues 130 · 2n a. Integrals of the form ) R (cos e, sin e) de 131 0

Description:
The book covers basic aspects of complex numbers, complex variables and complex functions. It also deals with analytic functions, Laurent series etc. Contents Introduction 9 Chapter 1. THE COMPLEX VARIABLE AND FUNCTIONS OF A COMPLEX VARIABLE 11 1.1. Complex Numbers and Operations on Complex Numbers
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.