ebook img

The Theory and Applications of Iteration Methods PDF

448 Pages·2021·9.33 MB·english
by  Argyros
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Theory and Applications of Iteration Methods

The Theory and Applications of Iteration Methods The Theory and Applications of Iteration Methods Second Edition Ioannis K. Argyros Second edition published 2022 by CRC Press 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742 and by CRC Press 2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN © 2022 Ioannis K. Argyros First edition published by CRC Press 1993 CRC Press is an imprint of Taylor & Francis Group, LLC Reasonable efforts have been made to publish reliable data and information, but the author and pub- lisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, access www.copyright. com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. For works that are not available on CCC please contact mpkbookspermis- [email protected] Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used only for identification and explanation without intent to infringe. ISBN: 978-0-367-65101-5 (hbk) ISBN: 978-0-367-65330-9 (pbk) ISBN: 978-1-003-12891-5 (ebk) DOI: 10.1201/9781003128915 Publisher’s note: This book has been prepared from camera-ready copy provided by the authors. Dedication Theauthordedicatesthisbooktohisbelovedparents,Anastasiaand Konstantinos,wifeDiana,andchildrenChristopher,Gus,Michael, andStacey Contents Preface.....................................................................................................................xiii Acknowledgement...................................................................................................xv Author....................................................................................................................xvii Chapter1 TheConvergenceofAlgorithmicModels.......................................1 1.1 AlgorithmicModels................................................................1 1.2 ConvergenceCriteriaforAlgorithmicModels.......................3 1.3 Applications............................................................................9 1.4 Exercises...............................................................................34 References......................................................................................36 Chapter2 TheConvergenceofIterationSequences......................................39 2.1 TheGeneralConvergenceTheorem.....................................39 2.2 Convergenceofl-StepMethods...........................................41 2.3 ConvergenceofSingle-StepMethods..................................44 2.4 ConvergenceofSingle-StepMethodswith DifferentiableIterationFunctions.........................................48 2.5 Applications..........................................................................52 2.6 Exercises.............................................................................100 References....................................................................................103 Chapter3 MonotoneConvergence...............................................................105 3.1 GeneralResults...................................................................105 3.2 AGeneralModelinLinearSpaces.....................................106 3.3 Applications........................................................................110 3.4 Exercises.............................................................................129 References....................................................................................132 Chapter4 Applicationsin:...........................................................................133 4.1 NeuralNetworks.................................................................133 4.2 ReliabilityEngineering.......................................................134 4.3 EconomicModels...............................................................142 4.4 Exercises.............................................................................146 References....................................................................................147 vii viii Contents Chapter5 ANovelSchemeFreefromDerivatives......................................149 5.1 Convergence.......................................................................150 5.2 Applications........................................................................154 5.3 Exercises.............................................................................157 References....................................................................................159 Chapter6 EfficientSixthConvergenceOrderMethod................................161 6.1 Localconvergence..............................................................162 6.2 Applications........................................................................168 6.3 Exercises.............................................................................172 References....................................................................................173 Chapter7 High-OrderIterativeMethods.....................................................175 7.1 LocalconvergenceAnalysisI.............................................175 7.2 LocalconvergenceanalysisII.............................................177 7.3 Applications........................................................................183 7.4 Applicationswithlargesystems.........................................187 7.5 Exercises.............................................................................190 References....................................................................................192 Chapter8 UnifiedLocalConvergenceofk−StepSolvers...........................195 8.1 Localconvergence..............................................................197 8.2 Applications........................................................................200 8.3 Exercises.............................................................................204 References....................................................................................206 Chapter9 BallComparisonBetweenThreeSixth-OrderMethods.............207 9.1 Localconvergence..............................................................208 9.2 Applications........................................................................216 9.3 Exercises.............................................................................220 References....................................................................................221 Chapter10 ConstrainedGeneralizedEquations ...........................................223 10.1 Notationandauxiliaryresults.............................................225 10.2 ThelocalNewtonmethod...................................................226 10.3 Applications........................................................................235 10.4 Exercises.............................................................................236 References....................................................................................238 Chapter11 Inexact Gauss–Newton Method for Solving Least Squares Problems......................................................................................241 11.1 Majorizingsequences.........................................................243 Contents ix 11.2 ConvergenceAnalysisforAlgorithmTGNU(I)................246 11.3 ConvergenceAnalysisforAlgorithmTGNU(II)...............252 11.4 Applications........................................................................254 11.5 Exercises.............................................................................256 References....................................................................................257 Chapter12 The Kantorovich’s Theorem on Newton’s Method for Solving GeneralizedEquation..................................................................259 12.1 Preliminaries.......................................................................261 12.2 Kantorovich’stheoremforNewton’smethod....................262 12.3 Applications........................................................................268 12.4 Exercises.............................................................................270 References....................................................................................272 Chapter13 AnInverseFreeBroyden’sMethod.............................................273 13.1 Preliminaries:regularlycontinuousdd...............................274 13.2 Semi-localconvergenceanalysisofBM.............................276 13.3 Applications........................................................................283 13.4 Exercises.............................................................................286 References....................................................................................288 Chapter14 ComplexityofaHomotopyMethodforLocatinganApproximate Zero..............................................................................................289 14.1 Convergenceanalysis..........................................................290 14.2 SpecialCases......................................................................294 14.3 Applications........................................................................295 14.4 Exercises.............................................................................297 References....................................................................................299 Chapter15 InexactMethodsforFindingZeroswithMultiplicity.................301 15.1 Auxiliaryresults..................................................................303 15.2 Ballconvergence.................................................................305 15.3 Applications........................................................................309 15.4 Exercises.............................................................................310 References....................................................................................311 Chapter16 Multi-StepHighConvergenceOrderMethods............................313 16.1 Localconvergenceanalysis................................................314 16.2 Applications........................................................................317 16.3 Exercises.............................................................................320 References....................................................................................322

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.