ebook img

The Statistical Stability Phenomenon PDF

349 Pages·2017·4.925 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Statistical Stability Phenomenon

Mathematical Engineering Igor I. Gorban The Statistical Stability Phenomenon Mathematical Engineering Series editors Jörg Schröder, Essen, Germany Bernhard Weigand, Stuttgart, Germany More information about this series at http://www.springer.com/series/8445 Igor I. Gorban The Statistical Stability Phenomenon 123 Igor I.Gorban Institute of Mathematical Machines andSystemsProblem National Academy of Sciences ofUkraine Kiev Ukraine Originally published by Naukova Dumka Publishing House of National Academy of Sciences ofUkraine, Kiev, 2014. ISSN 2192-4732 ISSN 2192-4740 (electronic) Mathematical Engineering ISBN978-3-319-43584-8 ISBN978-3-319-43585-5 (eBook) DOI 10.1007/978-3-319-43585-5 LibraryofCongressControlNumber:2016948097 ©SpringerInternationalPublishingAG2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor foranyerrorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAGSwitzerland Preface One of the most remarkable physical phenomena is the statistical stability of mass phenomena as revealed by the stability of statistics. Modern probability theory (includingmathematicalstatistics)describesmassphenomenabymeansofrandom (probabilistic or stochastic) mathematical models characterized by a probability measure. The basis of such models is the physical hypothesis of perfect statistical stability,whichassumesconvergenceoftherelativefrequencyofactualeventsand convergence of average values of physical quantities and processes. For many years the hypothesis of perfect statistical stability did not raise any doubts. However, recent experimental research on various physical quantities and processes over long observation intervals has shown that it is not confirmed experimentally. Forrelativelyshorttemporal,spatial,orspatio-temporalobservationintervals,an increase in data volume usually reduces the level of fluctuation in the statistics. However,whenthevolumesbecomeverylarge,thistendencyisnolongervisible, andonceacertainlevelisreached,thefluctuationsremainpracticallyunchangedor even grow. This indicates a lack of convergence for real statistics (their incon- sistency). The study of violations of statistical stability of physical phenomena and the development of an effective way to describe the real world, one which v vi Preface accounts for such violations, has resulted in the construction of the new physical- mathematical theory of hyper-random phenomena. In probability theory, the main mathematical entities (models) are random events, random variables, and stochastic functions; in the theory of hyper-random phenomena these entities are replaced by hyper-random events, hyper-random variables, and hyper-random functions, which are, respectively, sets of non-interconnected random events, random variables, and stochastic functions considered as a whole. The theory of hyper-random phenomena has mathematical and physical com- ponents. The mathematical component is based on A.N. Kolmogorov’s classical axioms of probability theory, while the physical component is based on certain physical hypotheses, in particular the hypothesis of imperfect statistical stability of actualevents,variables,processes,andfieldsandthehypothesisthatthesephysical phenomena are adequately described by the hyper-random models. For mathe- maticiansthetheoryofhyper-randomphenomenaisabranchofprobabilitytheory; for physicists, it is a new theory based on a new view of the world. Thismonographinvestigatesthephysicalphenomenonofstatisticalstabilityand presents the basic features of the theory of hyper-random phenomena. Both prob- lemshavebeenstudiedinfourRussianmonographspublishedin2007,2011,2014, and 2016 (Gorban 2007a, 2011a, 2014a, 2016). All these books are based on the author’soriginaltheoreticalandexperimentalresults,publishedinvariousscientific journals, in particular (Gorban 2005a–c, 2006a–e, 2007b, c, 2008c–f, 2009a–d, 2010a–g,2011b–k,2012a–j,2013a–e,2014b–g,2015a–f).Eachofthesebookshas its own specifics. The monograph of 2007 is devoted mainly to mathematical aspects of the theory of hyper-random phenomena and the monograph of 2011 to bothmathematical and physical considerations. The 2014 monographthen focuses mainlyontheproblemoftheviolationofconvergenceinphysicsandmathematics, and the 2016 book compares probability theory with the theory of hyper-random phenomena. The present book is an English version of the 2014 Russian monograph. The basic ideas presented in these books were formulated in the late 1970s and thereafter, in the context of: (cid:129) research in the field of applied hydroacoustics and sonar design (Gorban 1998b, c, 2008a, b), (cid:129) lectures on probability theory and mathematical statistics for cadets at the Kiev Air Force Institute (Gorban 1998a, 2000, 2003), and, of course, (cid:129) experimental and theoretical study of statistical stability violations in various physical processes. The aim of the current monograph, like those before it, is to generalize results obtained in the experimental study of violations of the statistical stability of real physical processes, and to develop, systematize, and improve a number of basic rules for the theory of hyper-random phenomena. Thebookconsistsoffiveparts.PartIreviewsfeaturesofthestatistical stability phenomenonanddevelopsmethodstostudystatisticalstabilityviolation,including Preface vii the case where data is limited. Part II describes experimental research on the violationofstatisticalstabilityinvariousprocessesofdifferentphysicalnature,and PartIIIpresentsabriefdescriptionofthemathematicalfoundationsofthetheoryof hyper-random phenomena. Part IV contains a mathematical generalization of the theory of hyper-random phenomena and lays the foundations for mathematical analysis of divergent and many-valued functions. Finally, Part V contains the results of theoretical and experimental study of statistical regularities in the viola- tion of statistical stability. Themonographiswrittenforresearchers,engineers,andpost-graduatestudents studyingthestatisticallawsofphysicalphenomena,aswellasthosedevelopingand using statistical methods for high-precision measurement, prediction, and signal processing over long observation intervals. The book may also be useful for high-level courses given to university students majoring in physics, engineering, and mathematics. To understand the material of the book, it is sufficient to be familiar with a standard university course on probability theory and mathematical statistics. Kiev, Ukraine Igor I. Gorban November 2015 References Gorban, I.I.: Spravochnik po Sluchaynym Funktsiyam i Matematicheskoy Statistike dlya Nauchnykh Rabotnikov i Inzhenerov (Handbook of Stochastic Functions and Mathematical StatisticsforScientistsandEngineers).CyberneticInstitute,NASofUkraine,Kiev(1998a) Gorban,I.I.:NewApproachinOptimizationofSpace–timeSignalProcessinginHydroacoustics. CourseNotestotheTutorialontheConference«Ocean’98».IEEE,Nice(1998b) Gorban,I.I.:Space–timesignalprocessingalgorithmsformovingantennae.ProceedingsofIEEE conferenceOcean’98,vol.3,pp.1613–1617(1998c) Gorban,I.I.:OsnovyTeoriiVipadkovikhFunktsiyiMatematycheskoystatystiki(Fundamentalsof ProbabilityTheoryandMathematicalStatistics).KievAirForceInstitute,UkraineMinistryof Defense,Kiev(2000) Gorban, I.I.: Teoriya Ymovirnostey i Matematychna Statystika dlya Naukovykh Pratsivnykiv ta Inzheneriv (Probability Theory and Mathematical Statistics for Scientists and Engineers). IMMSP,NASofUkraine,Kiev(2003) Gorban, I.I.: Gipersluchaynye yavleniya i ikh opisanie (Hyper-random phenomena and their description).AcousticheskiyVestnik.8(1–2),16–27(2005a) Gorban, I.I.: Metody opisania gipersluchaynykh velichin i funktsiy (Methods for describing hyper-randomvariablesandfunctions).AcousticheskiyVestnik.8(3),24–33(2005b) Gorban, I.I.: Sluchaynost, gypersluchaynost, khaos i neopredelennost (Randomness, hyper-randomness, chaos, and uncertainty). Standartizatsiya, Sertificatsiya i Kachestvo, vol. 3,pp.41–48(2005c) Gorban, I.I.: Hyper-random functions and their description. Radioelectronics Commun. Syst. 49 (1),3–15(2006a) Gorban, I.I.: Matematicheskoe opisanie fizicheskikh yavleniy v statisticheski neustoychivykh usloviyakh (Mathematical description of physical phenomena in statistically unstable conditions).Standartizatsiya,SertificatsiyaiKachestvo,vol.6,pp.26–33(2006b) viii Preface Gorban,I.I.:Otsenkikharakteristikgipersluchaynikhvelichin(Theestimatorsofcharacteristicsof hyper-randomvariables).Math.Mach.Syst.1,40–48(2006c) Gorban,I.I.:Stationaryandergodichyper-randomfunctions.RadioelectronicsCommun.Syst.49 (6),54–70(2006d) Gorban, I.I.: Tochechnyy i intervalnyy metody otsenivaniya parametrov gipersluchaynykh velichin(Thepointandintervalestimationmethodsforparametersofhyper-randomvariables). Math.Mach.Syst.2,3–14(2006e) Gorban, I.I.: Teoriya Gipersluchaynykh Yavleniy (Theory of Hyper-random Phenomena). IMMSP,NASofUkraine,Kiev(2007a) Gorban, I.I.: Hyper-random phenomena: definition and description. In: Proceedings of XIIIth International Conference “Knowledge–Dialogue–Solution”,vol. 1, pp. 137–147, 18–24 June 2007b Gorban, I.I.: Predstavlenie fizicheskikh yavleniy gipersluchaynymi modelyami (Presentation of physicalphenomenabyhyper-randommodels).Math.Mach.Syst.1,34–41(2007c) Gorban, I.I.: Mobile Sonar Systems: Optimization of Space–time Signal Processing. Naukova dumka,Kiev(2008a) Gorban,I.I.:ObrabotkaGidroakusticheskikh SignalovvSlozhnykhDinamicheskikhUsloviyakh (The Processing of Hydroacoustical Signals in Complicated Dynamic Conditions). Naukova dumka,Kiev(2008b) Gorban,I.I.:Hyper-randomphenomena:definitionanddescription.Inf.Theor.Appl.15(3),203– 211(2008c) Gorban,I.I.:Valuemeasurementinstatisticallyuncertainconditions.RadioelectronicsCommun. Syst.51(7),349–363(2008d) Gorban,I.I.:Opisaniefizicheskikhyavleniygipersluchaynumimodelyami(Descriptionofphysical phenomena by hyper-random models). International Book Series “Information Science and Computing”.Book1:AlgorithmicandMathematicalFoundationsoftheArtificialIntelligence, 135–141(2008e) Gorban,I.I.:GipersluchaynueMarkovskiemodeli(Hyper-randomMarkovmodels).International Book Series “Information Science and Computing”. Book 7: Artificial Intelligence and DecisionMaking,pp.233–242(2008f) Gorban,I.I.:Cognitionhorizonandthetheoryofhyper-randomphenomena.Inf.Theor.Appl.16 (1),5–24(2009a) Gorban,I.I.:Gipotezagipersluchynogoustroystvamiraivozmozhnostipoznaniya(Thehypothesis of hyper-random world building and cognition possibilities). Math. Mach. Syst. 3, 44–66 (2009b) Gorban,I.I.:Zakonbolshikhchiseldlyagipersluchaynoyvyborki(Thelawoflargenumbersfor hyper-randomsample).InternationalBookSeries“InformationScienceandComputing”.Book 15:Knowledge–Dialogue–Solution,pp.251–257(2009c) Gorban,I.I.:Opisaniefizicheskikhyavleniygipersluchaynymimodelyami(Descriptionofphysical phenomena by hyper-random models). Proceedings of the fifth distant conference “Decision makingsupportsystems.Theoryandpractice”,pp.5–9(2009d) Gorban, I.I.: Narushenie statisticheskoy ustoychivosti fizicheskikh protsesov (Violation of the statisticalstabilityofphysicalprocesses).MathematicalMachinesandSystems(1),pp.171– 184(2010a) Gorban,I.I.:Issledovanienarusheniystatisticheskoyustoychivostikursavalut(Studyofviolations ofstatisticalstabilityofcurrencyrate).ProceedingsoftheVthconference“Mathematicaland simulationsystemmodeling”,pp.84–86(2010b) Gorban, I.I.: Transformation of hyper-random quantities and processes. Radioelectronics Commun.Syst.53(2),59–73(2010c) Gorban,I.I.:Statisticheskayaneustoychivostmagnitnogopolyazemli(Statisticalinstabilityofthe magnetic field of the Earth). Proceedings of the sixth distant conference “Decision making supportsystems.Theoryandpractice”,pp.189–192(2010d) Preface ix Gorban, I.I.: Fiziko-matematicheskaya teoriya gipersluchaynykh yavleniy c obschesistemnykh pozitsiy (Physical–mathematical theory of hyper-random phenomena from general–system position).Math.Mach.Syst.2,3–9(2010e) Gorban,I.I.:Effektstatistisheskoyneustoychivostivgidroakustike(Effectofstatisticalinstability inhydrophysics).In:ProceedingsoftheXthAllRussianconference“Appliedtechnologiesof hydroacousticsandhydrophysics”.St.Petersburg:Science,pp.199–201(2010f) Gorban,I.I.:Disturbanceofstatisticalstability.In:InformationModelsofKnowledge,pp.398– 410.ITHEA(2010g) Gorban, I.I.: Teoriya Gipersluchainykh Yavleniy: Phyzicheskie i Matematicheskie Osnovy (The Theory of Hyper-random Phenomena: Physical and Mathematical Basis). Naukova dumka, Kiev(2011a) Gorban, I.I.: Disturbance of statistical stability (part II). Int. J. “Information Theories & Applications”18(4),321–333(2011b) Gorban, I.I.: Statistical instability of physical processes. Radioelectronics and Communications Systems54(9),499–509(2011c) Gorban, I.I.: Peculiarities of the large numbers law in conditions of disturbances of statistical stability.RadioelectronicsandCommunicationsSystems54(7),373–383(2011d) Gorban, I.I.:Markovskiegipersluchaynyemodeli(Markov hyper-random models). Math.Mach. Syst.2,92–99(2011e) Gorban, I.I.: Statisticheskaya ustoychivost kolebaniy temperatury vozdukha i osadkov v raene Moskvy (Statistical stability of air temperature and precipitation fluctuations in the Moscow area).Math.Mach.Syst.3,97–104(2011f) Gorban,I.I.:Zakonbolshikhchiselprinarusheniistatisticheskoyustoychivosti.(Thelawoflarge numbers in conditions of violation of statistical stability). Math. Mach. Syst. 4, 107–115 (2011g) Gorban, I.I., Gorban, N.I., Novotriasov, V.V., Yaroshuk, I.O.: Issledovanie statisticheskoy ustoychivosti kolebaniy temperatury shelfovoy zony okrainykh morey (Investigation of statisticalstabilityoftemperaturefluctuationsinoffshoreareainmarginalsea).Proceedingsof VIIthAll-Russiansymposium“Physicsofgeosphere”,Vladivostok,pp.542–547(2011h). Gorban, I.I., Korovitski, Yu.G.: Otsenka statisticheskoy ustoychivosti kolebaniy temperatury vozdukhaiosadkovvMoskveiKieve(Estimatesofstatisticalstabilityofairtemperatureand precipitation fluctuations in Moscow and Kiev). Proceedings of the VIth conference “Mathematicalandsimulationsystemmodeling”,Kiev,pp.23–26(2011i) Gorban, I.I., Yaroshuk, I.O.: Issledovanie statisticheskoy ustoychivosti kolebaniy temperatury i skorostizvukavokeane(Investigationofstatisticalstabilityoftemperatureandsoundspeedin theocean).Proceedingsoftheconference“CONSONANS–2011”,Kiev,pp.99–104(2011j) Gorban,I.I.:Issledovaniestatisticheskoyustoychivostikolebaniytemperaturyvozdukhaiosadkov (Researches of statistical stability of air temperature and precipitation fluctuations). Proceedings of the VIIth distant conference “Decision making support systems. Theory and practice”,pp.175–178(2011k) Gorban,I.I.:Raskhodyaschiesyaposledovatelnostiifunktsii(Divergentsequencesandfunctions). Math.Mach.Syst.1,106–118(2012a) Gorban, I.I.: Mnogoznachnye determinirovanye velichiny i funktsii (Many–valued determinate variables and functions). In: Proceedings of VIIth scientific–practical conference “Mathematicalandsimulationsystemmodeling”,Kiev,pp.257–260(2012b) Gorban, I.I.: Divergent and multiple–valued sequences and functions. International Book Series “Information Science and Computing”. Book 28: Problems of Computer Intellectualization, pp.358–373(2012c) Gorban,I.I.:Statisticallyunstableprocesses:linkswithflicker,nonequilibrium,fractal,andcolor noise.RadioelectronicsandCommunicationsSystems55(3),99–114(2012d) Gorban, I.I.: Statisticheskaya ustoychivost izlucheniya astrofizicheskikh obektov (Statistical stabilityofradiationfromastrophysicalobjects).Math.Mach.Syst.2,155–160(2012e)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.