THE SQUARE KILOMETRE ARRAY: AN ENGINEERING PERSPECTIVE Editedby: PETERJ.HALL InternationalSKAProjectOffice, Dwingeloo,TheNetherlands ReprintedfromExperimentalAstronomy Volume17,Nos.1–3,2004 LibraryofCongressCataloging-in-PublicationDataisavailable ISBN1-4020-3797-x 1-4020-3798-8 Published bySpringer, P.O.Box17,3300AADordrecht,TheNetherlands. TheselectionofanSKAsiterequirescomprehensivecharacterizationofthe radio-frequencyenvironmentatcandidatelocations.WhiletheSKAwillfeature advancedradio-frequencyinterference(RFI)mitigation,thesciencegoalsalso demandaradio-quietsetting.Aspartofaninternationalengineering collaboration,aspecialistteamfromTheNetherlandsFoundationforResearchin Astronomy(ASTRON)isworkingwithlocalengineersinArgentina,Australia, ChinaandSouthAfricatoinvestigatecandidatesites.Thepictureonthecover showsthefacilityestablishedbyASTRONandSouthAfricanengineersatthe remoteK3candidatesite,intheKaroowildernessofSouthAfrica.Similarcamps willbeset-upformeasurementsintheothercountriesduring2005.Photocredit: RobMillenaar,ASTRON Printedonacid-freepaper AllRightsReserved (cid:1)c Springer2005 Nopartofthematerialprotectedbythiscopyrightnoticemaybereproducedor utilizedinanyformorbyanymeans,electronicormechanical, includingphotocopying,recordingorbyanyinformationstorage and retrievalsystem,without writtenpermissionfromthecopyrightowner. PrintedintheNetherlands TABLEOFCONTENTS RichardSchilizzi/Foreword 1 PeterHall/Introduction 3 P.J. Hall / The Square Kilometre Array: An International Engineering Perspective 5–16 SKADEMONSTRATORSANDRESULTS David Deboer, Rob Ackermann, Leo Blitz, Douglas Bock, Geoffrey Bower, Michael Davis, John Dreher, Greg Engargiola, Matt Fleming, Girmay-Keleta, Gerry Harp, John Lugten, Jill Tarter, Doug Thornton, Niklas Wadefalk, Sander Weinreb and William J. Welch / The Allen TelescopeArray 19–34 Stefan J. Wijnholds, Jaap D. Bregman and Albert-Jan Boonstra / Sky Noise Limited Snapshot Imaging in the Presence of RFI with LOFAR’s InitialTestStation 35–42 Kjeld van der Schaaf, Chris Broekema, Ger Van Diepen and Ellen van Meijeren/TheLOFARCentralProcessingFacilityArchitecture 43–58 StefanJ.Wijnholds,A.gerdeBruyn,JaapD.BregmanandJan-Geralt bijdeVaate/HemisphericImagingofGalacticNeutralHydrogenwitha PhasedArrayAntennaSystem 59–64 A.vanArdenne,P.N.Wilkinson,P.D.PatelandJ.G.bijdeVaate/Elec- tronicMulti-BeamRadioAstronomyConcept:EmbraceaDemonstrator fortheEuropeanSKAProgram 65–77 Ray Norris / The Australian SKA New Technology Demonstrator Program 79–85 ANTENNAS E.E.M. Woestenburg and J.C. Kuenen / Low Noise Performance PerspectivesofWidebandAperturePhasedArrays 89–99 W.A. van Cappellen, J.D. Bregman and M.J. Arts / Effective Sensitivity ofaNon-UniformPhasedArrayofShortDipoles 101–109 Germa´n Corte´s-Medell´ın / Low Frequency End Performance of a Symmetrical Configuration Antenna for the Square Kilometre Array (SKA) 111–118 RogerSchultz/RadioAstronomyAntennasbytheThousands 119–139 John S. Kot, Richard Donelson, Nasiha Nikolic, Doug Hayman, Mike O’SheaandGaryPeeters/ASphericalLensfortheSKA 141–148 MariannaV.Ivashina,JanSimonsandJanGeraltbijdeVaate/Efficiency AnalysisofFocalPlaneArraysinDeepDishes 149–162 Meyer Nahon, Casey Lambert, Dean Chalmers and Wen Bo / Model ValidationandPerformanceEvaluationfortheMulti-TetheredAerostat SubsystemoftheLargeAdaptiveReflector 163–175 Wenbai Zhu, Rendong Nan and Gexue Ren / Modeling of a Feed SupportSystemforFast 177-184 JohnD.Bunton/CylindricalReflectors 185–189 RFSYSTEMS J. Bardin, S. Weinreb and D. Bagri / Local Oscillator Distribution Using aGeostationarySatellite 193-199 SuzyA.Jackson/RFDesignofaWidebandCMOSIntegratedReceiver forPhasedArrayApplications 201–210 DATATRANSPORT D.H.P. Maat and G.W. Kant / Fiber Optic Network Technology for DistributedLongBaselineRadioTelescopes 213–220 Ralph Spencer, Roshene McCool, Bryan Anderson, Dave Brown and Mike Bentley / ALMA and e-MERLIN Data Transmission Systems: LessonsforSKA 221–228 SIGNALPROCESSING Alle-Jan van der Veen, Amir Leshem and Albert-Jan Boonstra / Array SignalProcessingforRadioAstronomy 231–249 JohnD.Bunton/SKACorrelatorAdvances 251-259 StevenW.Ellingson/RFIMitigationandtheSKA 261–267 R.H. Ferris and S.J. Saunders / A 256 MHz Bandwidth Baseband Receiver/Spectrometer 269–277 TimothyJ.Adams,JohnD.BuntonandMichaelJ.Kesteven/TheSquare KilometreArrayMolongloPrototype(SKAMP)Correlator 279–285 Kjeld van der Schaaf and Ruud Overeem / COTS Correlator Platform 287–297 John D. Bunton and Robert Navarro / DSN Deep-Space Array-Based NetworkBeamformer 299-305 DATAPROCESSINGANDSOFTWARE T.J. Cornwell and B.E. Glendenning / Software Development for the SquareKilometreArray 309–315 A.J. Kemball and T.J. Cornwell / A Simple Model of Software Costs for theSquareKilometreArray 317–327 T.J. Cornwell / SKA and EVLA Computing Costs for Wide Field Imaging 329–343 Colin J. Lonsdale, Sheperd S. Doeleman and Divya Oberoi / Efficient ImagingStrategiesforNext-GenerationRadioArrays 345–362 SYSTEMISSUESANDMISCELLANEOUS Jaap D. Bregman / System Optimisation of Multi-Beam Aperture SynthesisArraysforSurveyPerformance 365–380 JohnD.BuntonandStuartG.Hay/SKACostModelforWideField-of- ViewOptions 381–405 Jaap D. Bregman / Cost Effective Frequency Ranges for Multi-Beam Dishes,Cylinders,ApertureArrays,andHybrids 407–416 JohnD.BuntonandT.JosephW.Lazio/Cylinder–SmallDishHybrid fortheSKA 417–422 B.Peng,J.M.Sun,H.Y.Zhang,T.Y.Piao,J.Q.Li,L.Lei,T.Luo,D.H.Li, Y.J.ZhengandR.Nan/RFITestObservationsataCandidateSKASite inChina 423–430 ExperimentalAstronomy(2004)17:1 FOREWORD TheSquareKilometreArray(SKA)Projectisaglobalprojecttodesignandcon- struct a revolutionary new radio telescope with of order 1 million square meters of collecting area in the wavelength range from 3 m to 1 cm. It will have two or- dersofmagnitudegreatersensitivitythancurrenttelescopesandanunprecedented largeinstantaneousfield-of-view.ThesecapabilitieswillensuretheSKAwillplay a leading role in solving the major astrophysical and cosmological questions of theday(seethesciencecaseatwww.skatelescope.org/pages/page astronom.htm). TheSKAwillcomplementmajorground-andspace-basedastronomicalfacilities underconstructionorplannedinotherpartsoftheelectromagneticspectrum(e.g. ALMA,JWST,ELT,XEUS,...). ThecurrentschedulefortheSKAforeseesadecisionontheSKAsitein2006,a decisiononthedesignconceptin2009,constructionofthefirstphase(international pathfinder)from2010to2013,andconstructionofthefullarrayfrom2014to2020. Thecostisestimatedtobeabout1000M . TheSKAProjectcurrentlyinvolves45institutesin17countries,manyofwhich areinvolvedinnationally-orregionally-fundedstate-of-the-arttechnicaldevelop- ments being pursued ahead of the 2009 selection of design concept. This Special Issue of Experimental Astronomy provides a snapshot of SKA engineering activ- ity around the world, and is based on presentations made at the SKA meeting in Penticton,BC,CanadainJuly2004.Topicscoveredincludeantennaconcepts,soft- ware,signaltransportandprocessing,radiofrequencyinterferencemitigation,and reportsonrelatedtechnologiesinotherradiotelescopesnowunderconstruction. Furtherinformationontheprojectcanbefoundatwww.skatelescope.org. RICHARDSCHILIZZI InternationalSKAProjectDirector ExperimentalAstronomy(2004)17:3 INTRODUCTION ThisSKAspecialissueofExperimentalAstronomyisasnapshotofkeyengineer- ingactivities,rangingfromantennaprototypingtosoftwaredesign.Theemphasis which the SKA community places on prototyping and demonstration is apparent fromthemixofincludedpapers.Excellentearlyresultsfromlargeendeavourssuch astheAllenTelescopeArrayandLOFARunderlinethevalueofthisemphasisbut therearemanyadditionalencouragingreportsfromotherprojects.Mostdealwith crucial sub-systems and components, common to all SKA concepts. A series of whitepapersoverrecentyearshasilluminatedimportantSKAdesignissuesand,in thistradition,afeatureofthisvolumeistheinclusionofthefirstsubstantialpapers dealingwithSKAdataprocessingandsoftware. IhopethatyouenjoythissummaryofSKAengineeringandrelatedactivities, andIthankauthors,reviewersandExperimentalAstronomystafffortheirassistance in producing the volume. As Richard Schilizzi mentions in his Foreword, more informationabouttheSKAisavailableatwww.skatelescope.org.Readersinterested in additional aspects of the project engineering, including costing exercises and industrialliaison,willfindagrowinglistofmaterialonthewebsite. PETERHALL InternationalSKAProjectEngineerandGuestEditor ExperimentalAstronomy(2004)17:5–16 (cid:1)C Springer2005 THE SQUARE KILOMETRE ARRAY: AN INTERNATIONAL ENGINEERING PERSPECTIVE P.J.HALL InternationalSKAProjectOffice,P.O.Box2,7990AADwingeloo,TheNetherlands (E-mail:[email protected]) (Received2August2004;accepted4October2004) Abstract.ThepaceoftheinternationalSquareKilometreArray(SKA)projectisaccelerating,with majorconceptreviewsrecentlycompletedandanumberoftechnologydemonstratorswellunderway. First-roundsubmissionstohostthetelescopewerelodgedbysixcountries.TheSKAtimelinecurrently showsasitedecisionin2006,andoneormoretechnologyconceptschosenin2008.Thetelescope isexpectedtobeoperational,invariousphases,intheperiod2015–2020.Thispapergivesastatus reviewoftheproject,andoutlinesengineeringconceptdevelopmentanddemonstrationprojects. Keywords: aperture synthesis, interferometry, international science projects, next-generation tele- scopes,novelantennas,radiotelescopes 1. Introduction TheSKAradiotelescopeprojectisaninternationalendeavourtobuildanaperture synthesis radio telescope with one million square metres of effective collecting area, operating the range 100 MHz to 25 GHz (Schilizzi, 2004). A major target of the project is to achieve a sensitivity gain of 100 relative to present-day radio interferometers.Thisisexpressedinakeyspecification(Jones,2004):overawide frequency range the sensitivity metric, A /T , should be of order 20000. Here, eff sys A is the effective collecting area (m2) and T is the system equivalent noise eff sys temperature(kelvin).Withacanonical50Ksystemtemperature,therequiredA eff is106m2,or1km2.Whilehalfthecollectingareawillbelocatedinacentralregion of ∼5 km diameter, the full array will extend across trans-continental distances (Figure1). TheSKAprojectrosetoprominenceinthelate1990swiththeformationofthe International SKA Steering Committee, an overseeing body currently consisting of representatives from 17 countries. The estimated construction budget is USD 1B (year 2004 dollars), a figure demanding many new technology developments in order to yield a cost per unit collecting area of one-tenth that of existing radio telescopes.AnInternationalSKAProjectOffice(ISPO)isnowfunctionalandthe firstInternationalDirectorandProjectEngineercommencedappointmentsin2003 and2004,respectively. 6 P.J.HALL Figure1. ExampleofapossibleSKAconfiguration.Inthismodel,patchesofcollectingarea(stations) extendfromadensecoreinalog-spiralarrangement.Thepatterncontinuestobaselinesof∼3000 km,withabout10%ofthetotalcollectingareabeingoutsidethescaledepicted. A recent series of whitepapers (ISPO Concept Whitepapers, 2003), or end-to- end descriptions of potential SKA designs, have proved invaluable in promoting science and engineering discussion, identifying areas in which there are deficien- ciesinknowledgeorspecificationclarity,andstimulatingnewstudies–including simulationofperformanceandcosttradeoffs.Ineffect,thewhitepapersareslices throughacomplexproblemandsolutionspace,thesamplesolutionsbeingusedto illuminate critical issues and provoke still more imaginative designs. An updated sciencecasefortheSKA(CarilliandRawlings,2004)identifiesfivekeyareasof astronomy and cosmology, with the original driver – the evolution of structure in theprimordialUniverse–stillfiguringprominently. Aswellasthemanytechnologydevelopmentprojectsunderway,animportant additionalaspectofSKAengineeringdealswithsiteinfrastructuredesignandcost- ing.InitialsitingproposalswerereceivedfromArgentina,Australia,Brazil,China, South Africa and the USA (ISPO Site Whitepapers, 2003). A first costing study (Hall, 2003a) puts the infrastructure value of the project at around USD 250M, including a custom optical fibre communications network for at least the central array. Regardless of the site chosen there will be significant infrastructure chal- lengesinareassuchasremotepowerprovision,activeandpassiveenvironmental conditioning,andlow-costaccessroadconstruction. AdecisiononSKAsitingisscheduledfor2006,withprecedingmeasurements of radio-frequency (RF) interference at candidate locations being made both by site proponents and the ISPO, the latter via a contract with ASTRON, the Dutch nationalradioastronomyorganization.Thesetechnicaleffortsprovideasnapshot of the current RF environments and a parallel part of the site proposal process involves proponents examining the feasibility of establishing a radio-quiet zone forthecentralpartoftheSKA;suchazonewouldprovidelong-terminterference
Description: