ebook img

THE SEGAL CONJECTURE FOR ELEMENTARY ABELIAN p-GROUPS-II. p-ADIC COMPLETION ... PDF

21 Pages·2001·1.51 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview THE SEGAL CONJECTURE FOR ELEMENTARY ABELIAN p-GROUPS-II. p-ADIC COMPLETION ...

THE SEGAL CONJECTURE FOR ELEMENTARY ABELIAN p-GROUPS-II. p-ADIC COMPLETION IN EQUIVARIANT COHOMOLOGY J. J. .P PAM dna .S .B CARUSO, PRIDDI G eb a etinif ,puorg-p tel GE eb a free elbitcartnoc ,ecaps-G dna tel :n eb tnairaviuqe LET elbats ypotomohoc .yroeht enO noisrev of the lageS erutcejnoc reads as .swollof THEOREM. The projection GE x X-X induces na isomorphism x;(X); GE(;Tcr+ x X),^ 2 GE(*cr x ;)xo for all jinite WC-G complexes X. sihT tluser seilpmi na eugolana for lareneg etinif ,spuorg tub we refer the reader ot [25] dna yllaicepse [S] for that. eW llahs evig as tneiciffe a proof of the meroeht as tneserp ygolonhcet smees ot ,wolla gnitrats morf the ylerup ciarbegla Ext noitaluclac [4,1.1] of ,smadA ,anedrawanuG dna relliM as a .nevig nehW ,‘)pZ(=G the meroeht si eud ot those .srohtua ,revewoH rieht lanigiro passage morf [4,1.1] ot siht case of the meroeht devlovni ylbaredisnoc erom Ext noitaluclac dna other work naht sruo does dna deiler no ]Sl[ for the noitalsnart of a tnairaviuqe-non noisrev of the meroeht ot the noisrev stated. riehT paper [4] therefore dettimo the tnemugra ni rovaf of a ecnerefer ot ,su dna we evah deworrob rieht eltit htiw rieht .noissimrep nosslraC [9, ]OI detelpmoc the proof of the meroeht yb gnicuder the lareneg case ot the case G = .‘),Z( ehT krowemarf of ruo proof si the eno he ,dehsilbatse dna ti lliw eb tnerappa that tsom of the niam saedi are eud ot .mih elihW ruo yramirp sucof si no the yratnemele nailebA case. we edulcni a etelpmoc proof ecnis stnairav of s’nosslraC stnemugra wolla a rebmun .snoitacifilpmisfo gnolA the ,yaw we lliw ezilareneg sih krowemarf dna sih noitcuder of the melborp ot yratnemele nailebA spuorg-p morf ypotomohoc ot ylriaf lareneg -iuqe tnairav .seiroeht sihT noitazilareneg si ton evissergid ecnis ruo proof of the meroeht nehw G r,Z(= si desab no a ytilarutan tnemugra gnirapmoc ypotomohoc ot rehtona yroeht for hcihw the suogolana tluser ylniatrec .sdloh eW eniltuo ruo work ni $1 dna neht proceed ot llif ni the .sliated ehT stnemugra here were sketched ni [22] dna appeared yllanigiro ni the stnirperp [12] dna [26]. $1. STATEMENTS OF RESULTS Let kz eb a detneserper ygolomohoc yroeht no sexelpmoc-G =( .)sexelpmoc’KC-G eW lliw evig a esicerp noitinifed ni 52. ,yllautcA we lliw yficeps a decuder yroehtib :X(& Y) no desab sexelpmoc-G X dna Y. sihT lliw eb a ygolomohoc yroeht ni X (for dexif Y) dna a ygolomoh yroeht ni Y (for dexif X). eW agree ot etirw 413 111 .J ,osuraC .J .P yaM dna .S .B yddirP )1.1( ;X,(fE )-Y = ;E “( ;x Y ,) (1.2) =)X(:E ;X_(& So) dna (fi/ Y) = ;”S(fc Y). sA ,lausu for desabnu secaps-G X dna Y, we set (1.3) )_Y_(@=)X(& dna ,)+Y&=)Y(G,k where X, setoned the noinu of X dna a tniojsid dexif-G .tniopesab eW lliw osla show how ot tcurtsnoc morf kg a detneserper yroehtib TL for each tneitouqbus J= HIK of nehW kz=n& kr lliw eb .*Jn nI ,lareneg k: lliw dneped no the noisnetxe K-+H-+J dna ton tsuj no the tcartsba puorg J. eW semitemos esu the noitaton ’h&K ot ezisahpme siht fact. roF H cG, we lliw evah egnahc of spuorg smsihpromosi (e.g. ,3C ;5$ 17, III) (1.4) +G(@ :X.\r :X($cz)Y Y) dna +G;X(@ ;X(@z)Y~A Y). Here X ni the tsrif msihpromosi dna niY the dnoces deen ylno eb na ,ecaps-H dna G f A .X si the desab ecaps-G detareneg yb X. ,ylticilpxE fi H acts no G _ A X aiv h(g, )K. = -hg( ,l hs), neht ,G A +G(=XH A X)/H htiw sti tnedive tfel noitca yb .G elihW ruo smeroeht nrecnoc spuorg-p dna cida-p ,noitelpmoc r)X(@ si ton etiuq the thgir gniht ot .yduts Rather, we enifed (1.5) ;X(Q Y) = ;,X(&(mil Y),^), where X, snur revo the etinif sexelpmocbus of X. ehT( reader yam prefer ot kniht ni smret of ).spuorg-orp esehT spuorg emoc htiw noisnepsus smsihpromosi ni htob .selbairav nI order ot evah gnol exact secneuqes detaicossa ot snoitarbifoc ni htob ,selbairav we agree ot tcirtser morf won no ot sexelpmoc-G Y htiw etinif ateleks dna ot emussa the gniwollof etinif epyt .sisehtopyh )6.1( Each puorg z$( Y) si yletinif detareneg fi Y has etinif .ateleks sihT noitpmussa has the gniwollof .ecneuqesnoc AMMEL 1.7. For any subquotient J of G. each group @(X; Y) isfinitely generated if X is a finite xelpmoc-J and Y is n xelpmoc-J Jvithjinite skeleta. roF J c G, siht swollof morf (1.6) dna htob parts of (1.4) yb na ysae .noitcudni ehT lareneg esac lliw wollof morf (3.2) .woleb esU of esrevni stimil ni (1.5) setutitsbus for the wedge ,moixa tub we eton yllacitehtnerap that the spuorg ;X(@ Y) dna ;X(@ Y),^ are yllausu .cihpromosi AMMEL 1.8. If X and Y etah finite skeleta and ,O=)Y;”X(@’mil then Q(X;Y)$ .)~)Y;”X(@(mil; ehT ysae proof si nevig ni $2. ehT noisulcnoc seilppa ot 52(X). eW hsiw ot enimreted nehw the larutan pam +GE&+-)X(;T;I )XA si na .msihpromosi Let GE eb the rebifoc of the noitcejorp EG, -+S’, that ,si the decudernu noisnepsus of EG htiw eno of sti enoc stniop as ,tniopesab dna eton that .’S=‘)GE( tI si tnelaviuqe ot enimreted nehw GE(& A .0=)X sA a tnairaviuqe-non space, GE A X si .elbitcartnoc dna ti si larutan ot ask nehw 0=)X(@ for lla elbitcartnoc secaps-G X. yB the SEGAL CONJECTURE FOR ELEMENTARY ABELIAN p-GROUPS--II. 415 gniwollof ,ammel whose proof si osla nevig ni $2, siht noitseuq si on erom lareneg naht the lanigiro .eno AMMEL 1.9. Assume that i?;” canishes on contractible H-spacesfor all proper subgroups H of .G fI )X$6 =Ofor any one contractible G-space X such that Xc = So, nellc @ rnnishes on contractible G-spaces. gniwolloF ,nosslraC we esu the gnirebifoc EG, -+S’+EG ni the dnoces elbairav ot niatbo the latnemadnuf exact ecneuqes (1.10) . . . -@(X; EG+)-~~(X)-,~~(X;EG)q~~4,C1(X; EC+)-. ehT spuorg ;X($! EG,) yrrac the free part of the ;melborp the ;X&/ )GE yrrac the ralugnis part. eW llahs evorp the gniwollof tluser tuoba the ralugnis part ni .43@ eW evah ylbissop tnereffid tnairaviuqe-non seiroeht kE,H detaicossa ot spuorgbus H of G. dna we tel *j_ = ;Til G dna *il = .,:k THEOREM .A Suppose that kf wnishes on contractible J-spacesfor all proper subquotients J .G‘fo Let X be a G-spuce such that XG = So and XH is contractible for all proper subgroups H. )i( fI ’G is not elementary Abelian, then @(X; EG) = 0. )ii( ,‘),Z(=Gff then l&X; EG) is the direct sum @rpfo 2,I‘ copies ofIYr- ‘j*(S’). pU ot ypotomoh-G ,epyt there si ylno eno X as deificeps ni the meroeht (e.g. [ 13]), dna we llahs yalpsid na ticilpxe ledom ni $8. yB the meroeht dna ,)Ol.l( nehw G si ton yratnemele nailebA we nac ylno evah &(X) = 0 fi ;X($/ EG,) = 0 dna nehw G si yratnemele nailebA we nac ylno evah 0=)X(:l fi the gnitcennoc msihpromomoh d ni (1.10) si na .msihpromosi oT yduts ;X(@ ,),GE we deen eno sisehtopyh ot wolla noitcuder ot a tnairaviuqe-non melborp dna rehtona ot erusne ecnegrevnoc of the tnaveler smadA lartceps .secneuqes htoB are ylraelc deifsitas yb .~CT eW yas that k: si tilps fi there si a larutan pam :C k*( W)+kT;( W) for spaces W regarded as laivirt-G secaps-G hcus that the etisopmoc k*( W)ikr;( W)zk;(G x W)%k*( W) si na ,msihpromosi where :CT G x W+ W si the .noitcejorp sihT noitidnoc seilpmi smsihpromosi (e.g. [25, ;29 3, ;5$ 17, )]@II (1.11) ;X(& )Z r ;G/X(*R )Z dna &( ;’tC Y) r z*( ;W ,)G/Y where X dna Y are eerf-G yawa( morf rieht esab )stniop dna v6 dna Z are .laivirt-G eW yas that k, si dednuob woleb fi Eq(So) = 0 for lla yltneiciffus llams .I( eW llahs evorp the gniwollof tluser ni $8, gnisu a ecnegrevnoc tluser for esrevni stimil of smadA lartceps secneuqes nevorp ni 57. Let k eb the murtceps gnitneserper k*. THEOREM .B Let kg be split and k, be bounded below. Let X be CI G-space such that XG = So and X” is contractible for all proper subgroups H. )i( fI G is not elementary Abelian, then !&X; ),GE .O= )ii( fI G =(ZJ and O=)k(qH f or all suficiently large q, then @JX; ),GE is the suw~ of P -‘(‘ 2ij‘ copies of Z%*(SO). nA etaidemmi noitcudni morf (1.9) dna smeroehT A dna B sevig the gniv\ollof noitazilareneg of s’nosslraC noitcuder .meroeht 614 J. Caruso. J. P. !aM dna .S B. Priddq THEOREM C. Ler G be afinite p-group bvhich is not eletwnrary .-lbelian. Let eb-gk a theory such that )i( :k wnishes on contracrible J-spaces for i/lc elettxrzrur~ Aheliotz subquorients J oj‘G; )ii( ;k s1 split atd (k, *)il is bounded below for a11 non-eletnenrary .4belian subqrtorietm J = K‘,H of .G Then l?; ranishes otl contrnctible J-spaces for (I// subquorients J ,G’fo including G :flesri suhT we etartnecnoc drawrofecneh no the case G .l),Z(= nehW )ii( of smeroehT A dna B htob .dloh we nac ylno expect ot evah )X(@ = 0 )’S(“;jfi = P(SO). sihT shows the ytissecen of the evitcirtser lacigolomohoc sisehtopyh ni )ii( of meroehT B ecnis there are ytnelp of seiroeht kz for hcihw 0=)X(@ tub ,)’S(P#)’S(“;i for elpmaxe tnairaviuqe yroeht-K dna tnairaviuqe ypotomohoc htiw stneiciffeoc ni tnairaviuqe gniyfissalc spaces. nI ynam cases, tcerid noitaluclac of ;X(:6 EC,) smees ylevitibihorp ,tluciffid dna noitanimreted of these spuorg sllaf tuo as na noitacilpmi of a tnereffid proof that .0=)X(@ See [22] dna [24] for suoirav selpmaxe dna .selpmaxe-retnuoc nI weiv of (1.9) dna ,)Ol.l( the gniwollof tluser won setelpmoc the proof of sht lageS .erutcejnoc THEOREM D. Let G = (Z,)’ clnd ler X be a G-space such rhat Xc = So and XH is cotmxcrible fi)r all proper subgroups H. Assume that the Segal conjecture holds Jbr G ’),Z(= s‘fi < r. Then d: ?&(X; l?G)-irY,- ‘(X; EG _) is atI isotnorphistnfor all q. ehT ytilibissop of hcus a proof was detseggus ni s’nosslraC tnirperp [9]. ruO tnemugra was deniltuo ni .]ZZ[ s’nosslraC dehsilbup paper sniatnoc a retal sketch of a erom lanoitaluclac tnemugra gnola ylhguor the emas senil as sruo ,ol[ .ppA B]. yB )ii( of smeroehT A dna ,B 6 ni meroehT D si a msihprom of free .seludom-)0x(*5 suhT ti seciffus ot show that 6 si a noitcejib no ,srotareneg that ,si that 6 si na msihpromosi nehw q=r- 1. nI siht degree, 6 si a msihprom of free seludom-,2 no the emas rebmun of .srotareneg tI 1lin suht eb na msihpromosi fi ti semoceb na msihpromosi nehw decuder dom p, dna siht lliw dloh fi ti semoceb a msihpromonom nehv\ decuder dom p. eW esu a ytilarutan .tnemugra nI $5. we yalpsid a etiuq elpmis yroeht :k htivi tinu :yt $/+-;TcT hcus that $! sehsinav no elbitcartnoc J-spaces for lla stneitouqbus J of ,G gnidulcni G .flesti ecniS the ecneuqes (1.10) si larutan ni ,seiroeht we niatbo a evitatummoc margaid -;?i ;X(‘ ;X(,’ri-L)GE EG_) (1.11) I‘ lr I i :X(&~)G~;X(‘& .),GE ecniS )X(@ = 0, the mottob pam 6 si na .msihpromosi tI therefore seciffus ot show that the tfel lacitrev arrow q semoceb a msihpromonom nehw decuder dom p. e’t\ llahs yfirev siht ni $6 dna so etelpmoc the proof of meroehT D. $2. PRELIXlIS.iRY DEFlSITlONS ASD LEXIM;\S eW ekam ruo snoitinifed esicerp dna evorp (1.8) dna (1.9) here. SEGAL CONJECTURE FOR ELEMESTARY ABELI.AN p-GROCPS-II. 417 Let ;C eb the mus of ylbatnuoc ynam seipoc of each of a set of sevitatneserper for the elbicuderri laer snoitatneserper of .G eW emussa nevig na renni tcudorp no .U dna we enifed na gnixedni space ni‘[ U ot eb a etinif lanoisnemid bus renni-G tcudorp space. fI Vc :tI we tel 2-w eb the lanogohtro tnemelpmoc of V ni ..tI A set of gnixedni spaces & si lanif-oc fi sti noinu si lla of 6. roF ,ssenetinifed the reader yam tnaw ot take c’ ot eb the mus of ylbatnuoc ynam seipoc of the laer raluger noitatneserper Reg dna ._J ot eb the ecneuqes n( Reg .)O>n! A murtcepserp-G k, dexedni no a lanif-oc set .zf stsisnoc of desab G secaps- k, /I for V ni .d dna desab spam-G :G :E ,k“-”I Vb,k+-V for Vc /tC ni d. Here X‘,Z X= A S’. where VS si the tniop-l noitacifitcapmoc of V. eW eriuqer G ot eb the ytitnedi fi =’b dnaw ot yfsitas the tnedive ytivitisnart noitaler for Vc CW 2. oT diova lacinhcet ,smelborp we emussa that k, si a murtcepserpVCC-G ni the esnes of [17, .]@I sA denialpxe there, siht noitpmussa stluser ni on ssol of .ytilareneg ehT( noitcnitsid neewteb artcepserp-G dna artceps-G si osla denialpxe ni ;]71[ we t’now esu artceps-G here.) Now tel J= H/K, where K Q H c G. evresbO that the dexif tniop space ’U sniatnoc lla elbicuderri snoitatneserper of J yletinifni .netfo eW yam tcirtser ot a lanif-oc set d ni U hcus that KV = W’ seilpmi =V W for V dna ni’B d. roF ,elpmaxe zt{ cjgeR evoba seifsitas siht noitidnoc for yna K cG. roF a murtcepserp-G k, dexedni no ,& we niatbo a J- murtcepserp ,il dexedni no the gnixedni set =’d { 1”I ,:&.E;T ni ”U yb gnittel k,( )KV ,k(= ;“)V the larutcurts spam-J of kJ are deniatbo yb passage ot dexif-K stniop morf the larutcurts spam-G of k,. nehW K =e, k, si tsuj k, regarded as na .murtceps-H A ecaps-G X has a noisnepsus murtcepserp-G XxX htiw Vth space E’X. ehT detaicossa murtcepserp-J si KXzC fi J= H/K. nI ,ralucitrap fi k, si the sphere murtcepserp-G ,oS.rC=6r7 neht k, si the sphere murtcepserp-J 7r,. nI ssel yratnemele cases, the -itnedi noitacif of k, si ssel .suoivbo roF ,elpmaxe nehw k, stneserper yroeht-K or ,msidroboc ti does ton wollof that k, osla stneserper yroeht-K or .msidroboc See [17, 11$9] for rehtruf .noissucsid eW yam yfitnedi GU htiw R” dna so debme Rq ni U for lla 4 20. roF a etinif desab xelpmoc-G X dna yna desab xelpmoc-G Y, enifed ;X(tE 4R-YC[miloc=)Y X AY k,V], zV Rq ~l)~G;FAY(’R-V~miloc,X[~ fi q90 1’3 R’ dna ;X(q& Y) = ;XqE(@ Y) fi q > 0. ehT dnoces mrof of the noitinifed osla seilppa ot etinifni ,sexelpmoc-G tub ti lliw eb laitnesse ot ruo work ot kniht ni smret of the tsrif .mrof Here, fi ,O=q the timiloc si nekat htiw respect ot the setisopmoc [P’X, AY k,V],- ““-” [C”‘X, Yr,Fk,V]~(‘[PX, Yr\ k,W],, dna ylralimis for other seulav of q. erehT are noisnepsus smsihpromosi dna exact secneuqes detaicossa ot sgnirebifoc ni htob .selbairav roF etinifni lanoisnemid X, there si osla a ’mil exact ecneuqes for the noitaluclac of ;X(@ Y) ni smret of the ;nX(@ Y), dna the gniwollof ciarbegla noitavresbo no the noitatummoc of esrevni stimil htiw cida-p noitelpmoc seilpmi (1.8). AMMEL 2.1. Let },A{ be an inverse sequence ofjnitely generated Abelian groups such that ,A’mil = 0. Then the natural homomorphism &Amil( +- ;),A((mil ) is an isomorphism. 814 .J .osuraC J. .P RI! dna .S 8. yddirP Proof: roF a dexif I( > 0, redisnoc the two xis mret ’miI exact secneuqes deniatbo morf the two short exact secneuqes ,l-.qp+-,4.+-,4.,+0 -0 dna 0-+pqA,-+,4,+.-l~, p~A,-+O. Here ,A, si the lenrek of :4p ,&+--,A dna si suht .etinif htoB ,4.,’mil 0= dna ’mE ,O=,Aqp the rettal esuaceb ti si a tneitouq of ,4.lmil .O= eW edulcnoc that the deyalpsid secneuqes niamer exact no passage ot esrevni .stimil eroferehT ,4,mil ),4,‘”p!,A(mil=,l;mil’p for each 4. ehT noisulcnoc swollof yb egnahcretni of stimii revo q dna .II eW edulcnoc siht noitces htiw the gniwollof desimorp proof. .)9.l(~o~~~~P ecniS ,oS=GX we evah a rebifoc ecneuqes .oS/X+-X+-oS X’ eb yna other elbitcartnoc .ecaps-G gnikaT hsams ,stcudorp we niatbo a rebifoc ecneuqes S+-’X A ’X-X A (X/SO). tI seciffus ot prose that &X’ A 0=)X dna ’X$@ A .O=))”S/S( eW mialc tsrif that EE( AW 0=)X for yna xelpmoc-G .VI ecniS the zero noteleks v dna the lateleks stneitouqbus w”/ -’Vh ’ for II > 0 are wedges of secaps-G of the mrof H/G + A S” dna ecnis ew yam as llew emussa that si‘+J ,etinif we dnif yb noitcudni revo ateleks dna esu of -nepsus nois that we deen ylno yfirev the mialc for .,)H/G(=’H fI =H ,G siht sdloh yb .sisehtopyh fI Hf ,G neht +)H/G((z& A ,)X(;Eg)X hcihw si zero yb the noitcudni .sisehtopyh eW mialc txen that ’X(@ A O=)Z for yna xelpmoc-G 2, hcus as ,’S‘:X hcus that GZ si a .tniop gniugrA as ,evoba we deen ylno yfirev siht nehw Z ,)H!,G(= for a proper puorgbus H, dna here niaga the noisulcnoc sdloh yb the noitcudni .sisehtopyh 93. WBQUOTIEKT THEORKS. FA;LIILIES, ASD S-FUNCTORS sihT noitces sevig lareves seiranimilerp dedeen for the proof of meroehT ,A tub we nigeb yb gniyas a tib erom tuoba tneitouqbus .seiroeht ,esruocfO the seiroehtib kf for stneitouqbus J are denifed the emas yaw as the seiroehtib kz. ,revewoH there si na gnitanimuIli evitanretla ,noitpircsed eud ot ,elbonetsnoC hcihw sekam (1.7) .raelc tI si desab no na yratnemele noitcurtsbo citeroeht noitavresbo for hcihw we llahs evah rehtruf esu .yltrohs A ylimaf g ni G si a set of spuorgbus desolc rednu .ycagujnocbus roF a ylimaf 3 dna xeipmoc-G X, we tel -,X eb the xelpmocbus gnitsisnoc of those stniop of X whose yportosi spuorg are ton ni .P’. erehT si a lasrevinu“ ”ecaps-9 -,E deziretcarahc pu ot ypotomoh yb (E9)H = 0 fi y.fhH dna (EstH 5 >rp{ fi .F.EW Let F.E eb the rebifoc of the noitcejorp +FE ,OS“- that si the decudernu noisnepsus of Ed. nehT oS=H)F.E( fi F$H dna H)FV8( v‘ >tp{ fi HER. ,revoeroM the ypotomoh-G epyt of e.9 si deziretcarahc yb these seitreporp [13]. roF ,elpmaxe X ni smeroehT ,A B dna D si P.E where B si the ylimaf of proper spuorgbus of .G htoB E9 dna E.9 nac eb nekat as sexelpmoc-G htiw etinif ,ateleks dna we shah ylno deen ot ylppa (1.6) ot sexelpmoc-G Y of siht .mrof LEMMA 3.1. For G-complexes X and Y, the inclusions X,s--+X and PE+’S induce bijections [X, i?F A Y&--&, Es A YJc+-[X,, .GIY SEGAL CONJECTURE FOR ELEMESTARY ABELIAN p-GROUPS--II. 119 PROPOSITIOX 3.2. Let J = ,K/H rvhere K < H c ,G and ler .9[K] be the family of sub- yroups of H which do nor conrain .K Then, fi)r finite J-complexes X and arbitrary J-complexes Y, i;:(X: Y) 2 E;(X, E9 ]K[ A Y). Proof: roF sexelpmoc-H W dna ,Z W,F[KI = WK dna .,]zA]K[sE,w[r,]z,~~~[=J]~z,~w[ ehT noisulcnoc swollof nopu gnittel nur-E hguorht X’R-VC (or Xy-CyC fi y )O< as Z snur hguorht AY k,V. ehT gnitrats tniop of the proof of meroehT A si the case 9 = }e( of (3.1), hcihw reads as .swollof Let XS etoned the ralugnis set of a ecaps-G X, yleman the ecapsbus of stniop htiw laivirt-non yportosi .puorgbus LEMSI.-\3.3. For G-complexes X and Y, the inclusions SX-+X and So-E, induce narural bijecrions [X, EGA Y-j, + [SX, EGA Y],+[SX, Y-j,. ,eroferehT for etinif sexelpmoc-G X, :I(S[miloc Y-R4X),kGV]G fi qk0 L.2 (3.4) ,X(@ )GE = R’ ,)X9-EYE(S[miloc k, V], fi .O<q k eW nac ecalper the rotcnuf S no the thgir edis of (3.4) yb other elbatius ,srotcnuf dna evi llahs evorp meroehT A yb gnitamixorppa S yb na tnelaviuqe deretlif rotcnuf htiw ylticilpxe elbaluclac .stneitouqbus nosslraC deifidoc the etisiuqer snoitidnoc no srotcnuf ni sih noiton of na ”rotcnuf-S“ ,ol[ .]VI ,ylfeirB na rotcnuf-S (T, T) si a rotcnuf T morf the yrogetac of desab sexelpmoc-G ot flesti together htiw a larutan pam 7: T(X A Y)+(TX) A Y hcus that 7 si the ytitnedi fi =Y ,oS T seifsitas the tnedive ytivitisnart noitaler no T(X A Y A ,)Z dna 7 si a msihpromoemoh nehw G acts yllaivirt no Y. ,yllautcA( we lliw ylno ylppa T ot etinif ).sexelpmoc roF the ralugnis set rotcnuf ,S the pam S(X )XS(+)Y A Y si tsuj the .noisulcni A roF yna rotcnuf-S T, we enifed ;X(@ T) yb gnicalper S yb Ton the thgir edis of (3.4). roF .O=g the timiloc si nekat htiw respect ot the metsys of setisopmoc ’-”I [Zw-” -GlvGk,)X':~(TC T(Z’X): C”-‘kc V],=[T(EwX), k, WIG for Vc IV, dna ylralimis for other seulav of q. ehT spuorg ;X&i T) are larutan ni X. fl T sevreserp rebifoc ,secneuqes yeht evig the smret of a ygolomohoc yroeht no etinif ,sexelpmoc-G tub we t’now deen siht fact. nI enil htiw the noitinifed ;X$/fo Y) ni (1.Q we enifed (3.5) ;X($/ T) = ;,X(@,mil r),^ no etinifni sexelpmoc-G X, where X, snur revo the etinif .sexelpmoc-bus oT erusne that mil sevreserp exact secneuqes here, we eriuqer ;X(@ T) ot eb of etinif epyt nehw X si .etinif roF the srotcnuf-S we llahs ,esu siht lliw wollof ylisae morf (1.7) dna the lanoitaluclac pihsnoitaler of the seiroeht ;?(@ T) ot the seiroeht ;k 024 J. .osuraC J. .P yaM dna .S .B yddirP A pam :4 ,T( (+-)r ,’T 7’) of srotcnuf-S si a larutan noitamrofsnart :# T-t T’ hcus that ~$’r Q(= A 1) :r T(X A Y)-Y- +(T’X) A for lla X dna Y. eW yas that 4 si na ecnelaviuqe or a noitarbifoc fi each tnenopmoc pam :4 TX-T’X si a ypotomoh-G ecnelaviuqe or a .noitarbifoc-G eW dnetxe the lausu snoitcurtsnoc of ypotomoh yroeht ot srotcnuf-S .esiwecaps suhT wedges. hsams stcudorp htiw spaces hcus( as senoc dna ,)snoisnepsus ,stuohsup ,srebifoc dna so no lla tsixe ni the yrogetac of .srotcnuf-S fI :4 T-T’ si a ,noitarbifoc we niatbo a tneitouq rotcnuf-S T’/T htivL (T’jT)(X)= T’X/TX dna a lacinonac ecnelaviuqe of srotcnuf-S C,-T’iT. A pam :4 T+ T’ secudni a pam :*+ ;X(@ T’)-+LE(X; I). fI 4 si na ,ecnelaviuqe neht 4* si na .msihpromosi if c$ si ,noitarbifoac neht $* stif otni a gnol exact ecneuqes . . . + c&X; T’/T)-&(X; T’) 5 ,@(X; T)-&+‘(X; +)T';'T . . . ehT proof sesu the fact, deilpmi yb the msihpromoemoh noitidnoc ni the noitinifed of na ,rotcnuf-S that ylraelC ;X& T v T’)z &(X; T) 0 &(X; T’) for yna S srotcnuf T dna T’. ehT stneitouqbus of ruo deretlif noitamixorppa of S lliw eb wedges of snoisnepsus of srotcnuf-S of the gniwollof lareneg .mrof NOITINIFED 3.6. Sqqxxe ueuig spuorgbus CK H c G. Define an S-functor .K(C H) b_v ietting ,K(C H)(X) = G _ A .KXH ehT pam-G :T ,G A H(XR A _G(+)KY A HX’) A Y si the noisnetxe oat pam-G of the tnedive noisulcni of secaps-H KX A +G(+KY A )KXH A Y. tneitouqbuS seiroeht retne otni ruo work esuaceb of the gniwollof .noitavresbo AMMEL 3.7. For HaK c ,G ;X&! ,K(C H)) is isomorphic to l&s(X”;). Proof. tI seciffus ot evorp siht for etinif X, erofeb passage ot cida-p .noitelpmoc roF lanoitaton ,yticilpmis we ylno evig the noitacifirev ni degree 0. Here the snoitinifed dna suoivbo smsihpromosi evig ;X(@ ,K(C H)) = G[miloc + ,6X‘“ k, ~J’J~ A HC 2 ,KX“’LZ[miloc k, qH 2 Z[miloc ,KX’v (kG Y)R]H,‘K= 5; s(XK). .Y> NA N.0ITAMIXORPPA OF THE SISGULAR SET FUSCTOR ruO noitamixorppa of S si a tnairav of s’nosslraC ,ol[ V]. We show the tahwemos gnisirprus fact that, pu ot ypotomoh-G ,epyt XS nac eb detcurtsnocer yllairotcnuf morf sti dexif tniop sets XH for yratnemele nailebA spuorgbus H. nosslraC( sesu lla proper spuorgbus ;ereh siht eciohc secudortni etiuq a tib of extra work, hcus as ,ol[ VI 7-6 dna V ).13-l ,ylesicerP we llahs evorp the gniwollof .tluser SEG.\L COSJECTURE FOR ELEMENTARY ABELIAN .II--SPUORG-p 171- THEOREM 4.1. Let G be a finite puorg-p of p-rank r. There is an S-finctor A and an equicalence $: .S-A A has a noitartlif cA,FcA,,F . . A=A,_,Fc by successire cofibrations. If ,B = A,,F and ,B = ,F/A,F _ A, fbr 0 <q < r, there are iso- smsihprom of srotcniij-S ,B 2 ,)o(A(CqCV H(w)). lm[ Here the o are strictly ascending chains ,,,A( . . . , )qA of non-trivial elementary Abelian subgroups of G, )w(A = ,,A and iA=‘-g,Ag/g{=)w(H for .)qbi<O The wedge runs over one o in each orbit [o] under the conjugation action of G on the set of such ascending chains. If G = (ZJ, there is also an S-fitnctor A bcith a filtration &F&F . . A=A,_,Fc by successive cojibrations. If &.,F=,& dna =,B _,F/A,F A, for ,1-r<q<O there are isomorphisms of S-functors B, 2 /,/FJc( ,)G,)u(A 0, erehvl the wedge runs ocer the strictly ascending chains ,,,A( . , )qA of non-trivial proper subgroups of G and )w(A = .,A Moreocer, there is a cofbration A+-A such that the quotient A/A is equivalent to the wedge of 2”1-r(rp copies of the S-jimctor I’-‘C(G, G) which sends X to xr-lXG. Before gnivorp ,siht we show how ti seilpmi meroehT .A llaceR that Y&=X ;ereht that ,si GX = oS dna XH u {pt> for H # G. Proof of(i) of Theorem A. yB (3.4) dna the ecnelaviuqe A-+& E~(x;EG)aE~(X;S)zE~(x;A). yB (3.7), the tneitouqbus srotcnuf-S ,B of A yfsitas ;X(,“;I B4) z ;X(“-;;&I C(A(o), H(o))) z &k&$XA’“‘), IO1 0 where J(o) = H(o)/A(o). fI A(w) # G, neht X ‘(N si a elbitcartnoc J(o)-space ,dna ecnis A(o) # e, IIJ*(o)(XA(U))=0 yb ruo sisehtopyh that ET sehsinav no elbitcartnoc J-spaces for lla proper stneitouqbus J. fI G si ton yratnemele ,nailebA neht A(w) t’nac eb G dna Ez(X; BJ = 0. eroferehT ;X(@ A)=0 yb noitcudni pu the .noitartlif Proof of (ii) of Theorem A. Let G = ’),Z( dna llacer that *j = k&,. fI r = 1, neht .B = A dna ;X(@ B,) )’S(L?jr ecnis )G(=o si the ylno elbissop .niahc sihT sevorp the tluser ni siht case, so emussa that r 2 2. yB the proof of part ,)i( ;X&! )A = 0. eroferehT ecniS !$(X; C(G, ,)’S(*^j=))G ;X(@ )G?, si the mus of ~‘(‘-l)‘~ seipoc of .)”S(p‘-Y ehT proof of (4.1) si desab no saedi of nelliuQ [28,29]. Let d )G(’i&= eb the poset of -non laivirt yratnemele nailebA spuorgbus of .G eW regard .&’ as a yrogetac ni the etisoppo of the lausu ,noihsaf gnidrager na noisulcni A c B as a pam .A+-B ehT puorg G acts no d yb 114 J. .osuraC J. .P yaM dna .S .B qddirP noitagujnoc of .spuorgbus fI G ,r)pZ(= we tel ?s. c.d eb the poset of laivirt-non proper spuorgbus of .G Here G acts yllaivirt no .d dna .g ecnis G si .nailebA Let 5 etoned the gniyfissalc space rotcnuf no )lacigolopot( seirogetac [32]. tI si deniatbo yb gnivlppa cirtemoeg noitazilaer (e.g. [20, $111) ot ,sevren where the evren of a yrogetac si the lausu laicilpmis space htiw secilpmis-q the selput-q of elbasopmoc ;sworra see [32] or .]l$.S2[ ehT rotcnuf B seirrac seirogetac-G ot ,secaps-G dna the gniwollof si a thgils noitarobale of [29, 2.21. AMMEL 4.2. IfG fe, then d.B si G-contractible. In particular, (B&)H is non-empty and contractible for erer_v H c .G Proof Choose a lartnec puorgbus B of order p. ecniS A c ,=BA B dna ~.EBA for ,NOEA we evah larutan snoitamrofsnart morf the rotcnuf BAHA ot the ytitnedi rotcnuf of .,d dna ot the tnatsnoc rotcnuf at .B esehT srotcnuf dna snoitamrofsnart are tnairaviuqe yb the ytilartnec of ,B ecneh yeht ecudni seipotomoh-G gnitcennoc the ytitnedi pam of &.B ot the tnatsnoc pam at the xetrev B no passage ot gniyfissalc spaces. eW tcurtsnoc ruo noitamixorppa of the ralugnis set rotcnuf yb gnizirtemarap d yb ralugnis stniop of secaps-G X. eW agree ot regard X as a yrogetac-G htiw tcejbo dna msihprom spaces X dna htiw larutcurts spam ,ytitnedi( ,ecruos target, )noitisopmoc the ytitnedi pam of X. Of ,esruoc the gniyfissalc space of siht yrogetac-G si tsuj X kcab .niaga eW weiv XS .ylralimis DEFHTION 4.3. Define a topological G-category J[X] and a continu ous fitnctor +k sZ[X] -SX a.sfol/o\cs. The objects of &[X] are pairs ,A( x), where A E .&’ and x E X”. There is a morphism ,A( ,B(-)x )y whenever B c A and y = x. The group G acts on objects by ,A(g x) ,i-gAg(= gx). The set of objects is topologized as the disjoint union of the spaces X\. The set of morphisms is topologized as the disjoint union otter pairs B c A of the spaces XA. Thefunctor $ is given by the X-coordinate of objects and morphisms. PROPOSITIO4N.4 . roF yna X, XS+]X[&.B:$B si a G-homotopy equivalence. Proof: yB the daehetihW-G ,meroeht ti seciffus ot evorp that H)XS(+-H)]X[d.B(:H)/CrB( si a ypotomoh ecnelaviuqe for each Hc .G eW nac pass ot dexif stniop no the level of seirogetac dna ,srotcnuf dna the gniyfissalc space rotcnuf setummoc htiw passage ot dexif .stniop yB s’nelliuQ meroeht A [28] hcihw( sdloh for lacigolopot seirogetac ecnis the niam tupni si the lacigolopot fact that cirtemoeg noitazilaer seirrac esiwecaps secnelaviuqe ot secnelaviuqe [21. ,)]4.A ti seciffus ot evorp that /“$(B x ) si elbitcartnoc for each .“)XS(ex ehT ammoc yrogetac x./“$ has stcejbo ,A( x) htiw XEX” dna A dexif yb H dna smsihprom ,A( ,B(-)x x) htiw B c ,A ,~XEu. dna A dna B dexif yb H. fI ,G si the yportosi puorg of ,y. neht H c G, dna x/“$ si tsuj a ypoc of .‘#G(&. suhT (4.2) sevig the .noisulcnoc eW are detseretni ni desab sexelpmoc-G X. ehT noisulcni of the tniopesab * ni X secudni a noitarbifoc-G .]X[&B-]*[&S ylraelC $B factors hguorht the tneitouq pam ,]*[~~Bi,]X[~.B-]X[~B dna siht tneitouq pam si a ypotomoh-G ecnelaviuqe ecnis ]*C&.B si .elbitcartnoc-G enifeD AX=&d[X]/B-Qu’[*] dna tel 4 etoned the decudni ypotomoh-G ecnelaviuqe .XS+XA neviG a dnoces -G xelpmoc Y, enifed the yrogetac-G Ld[X] A Y ni the tnedive yaw dna enifed a rotcnuf-G ..d[X A ]X[d+-]Y A Y

Description:
SEGAL CONJECTURE FOR ELEMENTARY ABELIAN p-GROUPS--II. 415 following lemma, whose proof is also given in $2, this question is no more general than the
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.