ebook img

The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter PDF

481 Pages·2004·6.518 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter

INTERNATIONALSERIES OFMONOGRAPHSONPHYSICS SeriesEditors J.BIRMAN CityUniversityofNewYork S.F.EDWARDS UniversityofCambridge R.FRIEND UniversityofCambridge M.REES UniversityofCambridge D.SHERRINGTON UniversityofOxford G.VENEZIANO CERN,Geneva INTERNATIONALSERIESOFMONOGRAPHSON PHYSICS 125 S.ATZENI,J.MEYER-TER-VEHN:Thephysicsofinertialfusion 124 C.KIEFER:Quantumgravity 123 T.FUJIMOTO:Plasmaspectroscopy 122 K.FUJIKAWA,H.SUZUKI:Pathintegralsandquantumanomalies 121 T.GIAMARCHI:Quantumphysicsinonedimension 120 M.WARNER,E.TERENTJEV:Liquidcrystalelastomers 119 L.JACAK,P.SITKO,K.WIECZOREK,A.WOJS:QuantumHallsystems 118 J.WESSON:Tokamaks3/e 117 G.E.VOLOVIK:Theuniverseinaheliumdroplet 116 L.PITAEVSKII,S.STRINGARI:Bose–Einsteincondensation 115 G.DISSERTORI,I.G.KNOWLES,M.SCHMELLING:Quantumchromodynamics 114 B.DEWITT:Theglobalapproachtoquantumfieldtheory 113 J.ZINN-JUSTIN:Quantumfieldtheoryandcriticalphenomena,Fourthedition 112 R.M.MAZO:Brownianmotion:fluctuations,dynamics,andapplications 111 H. NISHIMORI: Statistical physics of spin glasses and information processing: anintroduction 110 N.B.KOPNIN:Theoryofnonequilibriumsuperconductivity 109 A.AHARONI:Introductiontothetheoryofferromagnetism,Secondedition 108 R.DOBBS:Heliumthree 107 R.WIGMANS:Calorimetry 106 J.KÜBLER:Theoryofitinerantelectronmagnetism 105 Y.KURAMOTO,Y.KITAOKA:Dynamicsofheavyelectrons 104 D.BARDIN,G.PASSARINO:Thestandardmodelinthemaking 103 G.C.BRANCO,L.LAVOURA,J.P.SILVA:CPviolation 102 T.C.CHOY:Effectivemediumtheory 101 H.ARAKI:Mathematicaltheoryofquantumfields 100 L.M.PISMEN:Vorticesinnonlinearfields 99 L.MESTEL:Stellarmagnetism 98 K.H.BENNEMANN:Nonlinearopticsinmetals 97 D.SALZMANN:Atomicphysicsinhotplamas 96 M.BRAMBILLA:Kinetictheoryofplasmawaves 95 M.WAKATANI:Stellaratorandheliotrondevices 94 S.CHIKAZUMI:Physicsofferromagnetism 91 R.A.BERTLMANN:Anomaliesinquantumfieldtheory 90 P.K.GOSH:Iontraps 89 E.SIMÁNEK:Inhomogeneoussuperconductors 88 S.L.ADLER:Quaternionicquantummechanicsandquantumfields 87 P.S.JOSHI:Globalaspectsingravitationandcosmology 86 E.R.PIKE,S.SARKAR:Thequantumtheoryofradiation 84 V.Z.KRESIN,H.MORAWITZ,S.A.WOLF:MechanismsofconventionalandhighTc superconductivity 83 P.G.DEGENNES,J.PROST:Thephysicsofliquidcrystals 82 B. H. BRANSDEN, M. R. C. McDOWELL: Charge exchange and the theory of ion–atomcollision 81 J.JENSEN,A.R.MACKINTOSH:Rareearthmagnetism 80 R.GASTMANS,T.T.WU:Theubiquitousphoton 79 P.LUCHINI,H.MOTZ:Undulatorsandfree-electronlasers 78 P.WEINBERGER:Electronscatteringtheory 76 H.AOKI,H.KAMIMURA:Thephysicsofinteractingelectronsindisorderedsystems 75 J.D.LAWSON:Thephysicsofchargedparticlebeams 73 M.DOI,S.F.EDWARDS:Thetheoryofpolymerdynamics 71 E.L.WOLF:Principlesofelectrontunnelingspectroscopy 70 H.K.HENISCH:Semiconductorcontacts 69 S.CHANDRASEKHAR:Themathematicaltheoryofblackholes 68 G.R.SATCHLER:Directnuclearreactions 51 C.MØLLER:Thetheoryofrelativity 46 H.E.STANLEY:Introductiontophasetransitionsandcriticalphenomena 32 A.ABRAGAM:Principlesofnuclearmagnetism 27 P.A.M.DIRAC:Principlesofquantummechanics 23 R.E.PEIERLS:Quantumtheoryofsolids The physics of inertial fusion BEAM PLASMA INTERACTION, HYDRODYNAMICS, HOT DENSE MATTER STEFANO ATZENI UniversitàdiRoma‘LaSapienza’andINFM,Italy JÜRGEN MEYER-TER-VEHN Max-Planck-InstitutfürQuantenoptik,Garching,Germany CLARENDON PRESS-OXFORD 2004 3 GreatClarendonStreet,OxfordOX26DP OxfordUniversityPressisadepartmentoftheUniversityofOxford. ItfurtherstheUniversity’sobjectiveofexcellenceinresearch,scholarship, andeducationbypublishingworldwidein Oxford NewYork Auckland Bangkok BuenosAires CapeTown Chennai DaresSalaam Delhi HongKong Istanbul Karachi Kolkata KualaLumpur Madrid Melbourne MexicoCity Mumbai Nairobi SãoPaulo Shanghai Taipei Tokyo Toronto OxfordisaregisteredtrademarkofOxfordUniversityPress intheUKandincertainothercountries PublishedintheUnitedStates byOxfordUniversityPressInc.,NewYork ©S.AtzeniandJ.Meyer-ter-Vehn2004 Themoralrightsoftheauthorhavebeenasserted DatabaserightOxfordUniversityPress(maker) Firstpublished2004 Allrightsreserved.Nopartofthispublicationmaybereproduced, storedinaretrievalsystem,ortransmitted,inanyformorbyanymeans, withoutthepriorpermissioninwritingofOxfordUniversityPress, orasexpresslypermittedbylaw,orundertermsagreedwiththeappropriate reprographicsrightsorganization.Enquiriesconcerningreproduction outsidethescopeoftheaboveshouldbesenttotheRightsDepartment, OxfordUniversityPress,attheaddressabove Youmustnotcirculatethisbookinanyotherbindingorcover andyoumustimposethissameconditiononanyacquirer AcataloguerecordforthistitleisavailablefromtheBritishLibrary LibraryofCongressCataloginginPublicationData (Dataavailable) ISBN 0198562640(Hbk) 10 9 8 7 6 5 4 3 2 1 TypesetbyNewgenImagingSystems(P)Ltd.,Chennai,India PrintedinGreatBritain onacid-freepaperby AntonyRowe,Chippenham,Wiltshire Foreword Theauthorsofthisexcellentbookhaveaskedmeforabriefforeword,givingsomeemphasis totheearlyworkonlaserfusionattheLawrenceLivermoreNationalLaboratory(LLNL). This work was motivated by the possibility that lasers could create states of matter and thermalradiationthatweresimilartothosefoundinthermonuclearweapons; and, inthe longer term, the possibility that a small amount of DT could be compressed and ignited without the help of fission. The basic principles of high yield-to-weight nuclear weapon designhadlargelybeenlearnedandputintopracticein1962,buttheintriguingchallenge of‘purefusion’remained. Meanwhile in the Summer of 1961, the technique of cavity ‘Q-spoiling’ was demon- strated at the Hughes Research Laboratory at Malibu, and applied to produce powerful short-duration light pulses with the ruby laser that also had been invented there in 1960. At the same time at the American Optical Company it was shown that a laser could be madewithanyoneofanumberofrare-earthoxidesdissolvedinglass,insteadofruby.This madeitposibletouserelativelyinexpensivematerialasthelasermedium,andofferedthe prospectofbuildingpulsedlasersofgreatlyincreasedsizeandpower. Asaresultofthispromisingoutlook,the(then-named)LawrenceRadiationLaboratory began an exploratory research programme in the Spring of 1962 to study the interaction ofintenselightwithplasma,toevaluatethefeasibilityofconstructingalaserwithenough energyandpowertoigniteDT,andtoinvestigatesuitableimplosionandignitionconfig- urations.Preliminarycalculationssuggestedthatalaserpulseofatleast100kJofenergy andatmost10nsdurationwouldberequired.Similarprogrammeswerebegunatseveral Europeanlaboratories,includingtheLebedevPhysicalInstituteinMoscow,USSR,andthe Comissariatl’EnergieAtomiqueLaboratoryinLimeil,France. This exploratory programme continued from 1962 to 1972. Lasers considered for possible large-scale development were the neodymium-glass and atomic-iodine lasers. The former was chosen, and a prototype amplifier consisting of 16 face-pumped disks, orientedatBrewster’snon-reflectingangle,wasbuilt.Thisamplifier,inamulti-passcon- figuration, was used to amplify single 5 ns pulses for laser–plasma interaction studies. An important result was the discovery, shared with the Lebedev Institute, of energetic ‘hot’ electrons that could cause excessive pre-heating of the DT fuel being compressed. This effect, together with greatly improved laser/target coupling obtained with light of shorter wavelength, led to the use of the third harmonic of the laser light to drive target implosions. The close relation between the physics of the H-bomb and the physics of inertial confinement fusion (ICF) caused the United States and other nuclear weapons states to classifysomeaspectsofICFthatwereconsideredsensitive, especiallytheimportanceof fuel-compressionandtheuseofthermalX-raystodriveanimplosion.Theformerwasnot declassifieduntil1971whenitwasdisclosedinaSovietpaperpresentedatameetingof vi Foreword theEuropeanPhysicalSocietyinEngland.Thelatterremainedclassifieduntil1981when thefollowingstatementswereofficiallyreleased: 1. Inthermonuclearweapons,radiationfromafissionexplosivecanbecontainedandused tocompressandigniteaphysicallyseparatecomponentcontainingthermonuclearfuel (theTeller-Ulam‘radiationimplosion’principle). 2. InsomeICFtargetsradiationfromtheconversionoffocusedenergy(e.g.laserorparticle beam)canbecontainedandusedtotransferenergytocompressandigniteaphysically separatecomponentcontainingthermonuclearfuel(the‘indirect-drive’approachtoICF). Shortly after the declassification of compression, a landmark paper was given in May of1972attheInternationalQuantumElectronicsConferenceinMontrealbyagroupfrom Livermore. The results of computer simulations of a direct-drive implosion of a droplet ofliquidDTsuggestedthatcentral‘hotspot’fuelignitiontogetherwith10,000-foldfuel compressioncouldbeachievedbyproperlyprogrammingthetime-dependenceofthelaser powerdrivingtheimplosion;andthat60kJoflaserenergywouldbesufficienttogenerate 1800kJofthermonuclearenergy,a30-foldgaininenergy.Theseimportantresultsprompted amajorincreaseinICFinterestbothintheUnitedstatesandabroad. AtLivermore,adecisionwasmadetosubstantiallyincreasethesizeoftheprogramme, andfocusattentionondevelopingthelargelasersystemneededtoachievethermonuclear ignition by means of indirect drive. A succession of lasers of increasing size and output energyweredevelopedandtested,leadingtothepresentconstructionofa192-beam,1.8MJ laserattheNationalIgnitionFacility(NIF).Alaserofsimilarcapability,LaserMegajoule (LMJ),isbeingconstructedatBordeaux,France. TheNIFandLMJareexpectedtobecompletedin2008.Theywillprovideanunpreced- ented capability for the laboratory study of matter at high energy density, its interaction with intense radiation, and for meeting the long-standing challenge of ‘pure fusion’. A relative newcomer to the field of high energy density is the ‘ultra-intense chirped-pulse laser’capableofproducinglightatenergydensitiesordersofmagnitudegreaterthanthe ICFlasers,andwithpossibleapplicationstoICFandnuclearphysics. This book is indeed timely, providing as it does a lucid and comprehensive exposition ofthePhysicsofHighEnergyDensityandInertialConfinementFusion,onthethreshold ofthisrapidlyexpandingfieldofphysics.Theauthorsarebothfromanacademicscience environment with no connections to weapons research. Their book may help to establish laboratoryhighenergydensityphysicswithhighpowerbeamsasanormalbranchofplasma physicswithmanycivilianapplications. Pleasanton RAYKIDDER July2003 Preface Thisbookisdevotedtoinertialfusiontargetsandthevariousbranchesofphysicsinvolved. Itcovershydrodynamics,hydrodynamicinstabilities,thermaltransport,radiativeandcol- lisionalprocessesinhotdensematter,equationsofstate,plasmainteractionofhigh-power laser and ion beams, as well as nuclear fusion reactions. The book addresses researchers working in this field, those teaching it to students as well as students themselves. It is intended as an introduction providing basic understanding, but also as a reference book derivingallthekeyformulasincludingscalingexponentsandnumericalfactors. Thebookgrewoutofhigh-powerlaserresearchinGermanyandItalyrelatedtoinertial fusionenergy.Bothauthorsjoinedthefieldatabout1980afterthepioneeringtime,described by Ray Kidder in the foreword. In 1980, it was clear that small fuel capsules had to be implodedtohighdensity, butmostofthedetails, includingbasicaspectssuchastheuse ofthermalradiation,werestillclassified.Thismeantthatmostofthephysicsingredients hadtobedevelopedfromscratch,includingsimulationcodeswhichthenmaturedoverthe years. In Germany, high-power laser research was performed at IPP Garching (and later at MPQ), directed by S. Witkowski. These early activities were upgraded in 1979, when R.BockinitiatedresearchonheavyionfusionatGSIDarmstadtwithaclearfocusonfusion energy.ItwasthisexperimentalenvironmentatMPQandGSIthatstronglydeterminedthe workofoneofus(MtV).AlsotheHIBALLreactorstudy,headedbyG.KesslerfromKFK KarlsruheandG.KulscinskifromtheUniversityofWisconsin,setthedirectionofthetarget workformanyyears. InItaly, researchonlaser-producedplasmaswaspursuedatLaboratorioGasIonizzati ofCNEN(laterFusionDivisionofENEA),directedbyB.Brunelli, since1963. Agroup of researchers, headed first by U. Ascoli-Bartoli and later by A. Caruso, performed pio- neeringexperimentsanddevelopedthetheoryofablativepressuregeneration.Theactivity, interruptedin1970,wasresumedaboutadecadelater,whentheconstructionoftheABC laserwasapproved,andasmallfusion-orientedprogrammewasdevised.Justatthistime (1978) one of us (S. A.) joined the Frascati group as a student, to prepare a thesis on laser-drivenfusion-ignition.Thismarkedthebeginningofatwo-decadeactivityonlaser- producedplasmaandinertialconfinementfusion(ICF),firstatENEA,andsince2000at theUniversityofRome. Chapters 3–5 of this book present the basic concepts of ICF: implosion, ignition, and gain.Theyreflect(andextend)muchoftheworkperformedbytheauthorsintheearly1980s. Atthattime,gainingautonomousunderstandingofICFwasakeyissueatourlaboratories. ENEA-Frascaticontributedtothetheoryofhotspotignitionandgainmodels, developed the 1D IMPLO code and designed ICF targets. S. A. acknowledges the initial guidance ofhisthesisadvisorB.Brunelli,theearlyworkunderthedirectionofA.Caruso,andthe cooperation with A. Giupponi and V. A. Pais. He also thanks S. Nakai and H. Takabe for suggesting an in-depth analysis of non-isobaric configurations. The presentation of Chapter3owesmuchtotheseminalworkbyRochestercolleagues,ledbyR.L.McCrory viii Preface andC.Verdon,andtoenlighteningdiscussionswithS.Bodner.Forexchangesofideason gaincurves,wethankM.Basko,M.Herrmann,J.Lindl,M.Key,M.Tabak,andR.Piriz. After1981,theroleofthermalradiationtodrivetargetimplosionswithhighsymmetry graduallybecameclearertous,anditwasthentheworkofR.Sigelonhohlraumtargetsthat determined12yearsofresearchonradiationhydrodynamicsatMPQ,culminatinginjoint German-JapaneseexperimentsatILEinOsakawithR.SigelandH.Nishimuraasthelead- ingscientists.LargerportionsofChapter7onthermalwaves,Chapter9onhohlraumtargets and the sections of Chapter 10 on opacity modelling are based on results of this period. This includes the heat wave solution (at MPQ first found by R. Pakula), simple high-Z opacitymodelsdevelopedbyK.EidmannandG.Tsakiris, radiativelydrivenshockwave experiments and opacity measurements performed by T. Löwer, K. Eidmann, and many others.Thedevelopmentofthe1Dand2DMULTIcodebyR.Ramisallowedustodesign hohlraumtargetsforheavyionfusion;inparticular,wethankJ.Honrubia,M.Murakami, A.Oparin, R.Ramis, andTh.SchlegelfortheircontributionstoChapter9. Similarwork was performed at ENEA Frascati, which led to the first published 1D simulation of an indirect drive high gain target (by A. Caruso and V. A. Pais) and to analytical results on radiationsymmetrization.Allthisworkwasdriveninsomeindirectwaybythecorrespond- ingresearchofourLivermorecolleagues,eventhoughexplicitexchangeofresultsbecame possibleonlyafterthedeclassificationactof1993. Sincethemid-1980s,aspectsofsymmetryandstabilitybecamethefocusoftheoretical andsimulationresearchatENEA-Frascati.Inparticular,thisledtothedevelopmentofthe 2DcodeDUED,resultsofwhichareessentialforChapters3,8,and12.HereS.A.wishes tothankM.L.Ciampi,A.Guerrieri,S.Graziadei,andM.Temporalfortheircontributionto DUEDandtothesimulationstudies.Anotherstimuluscameinthe1990sfromanEuropean initiative to study heavy ion fusion, promoted by C. Rubbia and promptly supported by R. A. Ricci in Italy and R. Bock in Germany. Chapter 8, on hydrodynamic instabilities, profited strongly from discussions with a number of colleagues. In particular, we thank H.Azechi, S.Bodner, S.Haan, N.A.Inogamov, A.R.Piriz, D.Shvarts, H.Takabe, and J.G.Wouchuk.ThepresentationalsotakesadvantagefromthereviewpapersbyH.-J.Kull onthepotentialflowmodelandbyR.Bettiandcollaboratorsonablativeinstabilities. J.MtVwantstoexpresshisspecialgratitudetoS.AnisimovfromtheLandauInstitutefor TheoreticalPhysicsinMoscow,whoprovidedinvaluableinsightandadvicetoessentially allmattersofthisbook. ThisconcernsinparticularChapter6onhydrodynamicsandthe fundamentalaspectsofsimilaritysolutions.TheannualGerman–Russianseminars(1984– 89),organizedontheRussiansidebyS.AnisimovandV.Fortov,gaveuscontacttoleading RussianscientistsandaccesstotheimportantRussianliterature.Weacknowledgenumerous discussionswithV.Fortovonshockwavesandhighenergydensityphysics. J.MtValso acknowledgesaone-monthstayatGSIin1994,whenfirstpartsofthisbookwerewritten. HethanksI.HofmannfromGSIformanydiscussionsonacceleratorissuesofheavyionICF andalsoD.HoffmannandtheGSIplasmagroupfortheirsubstantialinputtoChapter11on ionbeamstopping.ThisincludesfruitfuldiscussionswithM.BaskoandB.Sharkovfrom ITEPMoscowaswellasT.MehlhornfromtheSandialaboratories. BothauthorsenjoyedaguestprofessorshipatILEinOsaka(Japan),S.A.in1993,and J. MtV in 1995. Several sections of this book are based on our lecture notes at ILE. We bothwanttothankthedirectorsS.NakaiandlaterK.Mimaaswellasallourcolleaguesat ILEfortheverystimulatingatmosphereattheirinstitute. DiscussionswithK.Nishihara, M.Murakami,H.TakabeaswellasH.AzechiandY.Katoaregratefullyacknowledged. Preface ix J.MtVthanksGrantLoganforastayatUCBerkeleyin2003,whereChapters10and11 werefinalizedandfromwherehehadfrequentcontactstohisLivermorecolleaguestocheck specialpartsofthebook,inparticularwithJ.Hammer,S.Hatchett,M.Herrmann,J.Lindl, andM.Rosen. ConcerningChapter12, theauthorsowealottotherecentworkshopson fastignitionoffusiontargetsandinparticulartoS.Hatchett,M.Key,P.Norreys,M.Roth, andM.Tabak.J.MtVacknowledgesinparticular6yearsofmostfruitfulcooperationwith A.Pukhovonrelativisticlaser–plasmainteractionbasedonparticlesimulations.Thisalso comprisesK.WitteandtheMPQexperimentalcrewwithK.Eidmann,E.Fill,G.Tsakiris, andtheirexcellentstudents.S.A.acknowledgestheskilfulcontributionto2Dfastignition simulationsbyM.L.CiampiandM.Temporal. Finally we are indebted to R. Bock and R. Kidder for reading the whole manuscript, S.Anisimov,F.V.Frazzoli,andS.Hatchettfortheircommentsonspecialchapters,A.Krenz, KeLan,Th.Schlegel,and,inparticular,Zh.M.Shengforhelpwiththefigures. Writing this book turned out to be a fascinating, but far more time consuming task than initially expected. It is only thanks to the patience, understanding, and support of ourfamilies, especiallyourwivesBeatriceandHelga, thatwecouldcompletethisbook. S. A. thanks Helga for her warm hospitality at MtV´s home in Garching; both authors are indebted to Mrs Caterina Tomassi-Atzeni (S. A.’s mother), whose mountain home at PetrellaLiriintheItalianAppenninsservedusasarefuge,wherewecouldworktogether efficiently. S.ATZENI(ROMA) July2003 J.MEYER-TER-VEHN(GARCHING)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.