ebook img

The physical structure of radio galaxies explored with three-dimensional simulations PDF

7.7 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The physical structure of radio galaxies explored with three-dimensional simulations

MNRAS000,1–17(2014) Preprint1February2016 CompiledusingMNRASLATEXstylefilev3.0 The physical structure of radio galaxies explored with three-dimensional simulations Justin Donohoe 1? & Michael D. Smith 1† 1CentreforAstrophysics&PlanetaryScience,TheUniversityofKent,Canterbury,KentCT27NH,U.K. Accepted.....Received.....;inoriginalform..... 6 1 0 ABSTRACT 2 n We present a large systematic study of hydrodynamic simulations of supersonic adiabatic a jets in three dimensions to provide a definitive set of results on exploring jet density, Mach J numberandprecessionangleasvariables.Werestricttheset-uptonon-relativisticpressure- 9 equilibrium flows into a homogeneous environment. We first focus on the distribution and 2 evolution of physical parameters associated with radio galaxies. We find that the jet density has limited influence on the structure for a given jet Mach number. The speed of advance ] variesbyasmallfactorforjetdensitiesbetween0.1and0.0001oftheambientdensitywhile A thecocoonandcavityevolutionchangefromnarrowpressurebalancedtowideover-pressure G astheratiofalls.Wealsofindthatthefractionofenergytransferredtotheambientmedium . increaseswithdecreasingjet-ambientdensityratio,reaching≈80%.Thisenergyispredom- h inantly in thermal energy with almost all the remainder in ambient kinetic form. The total p energy remaining in the lobe is typically under 5%. We find that radio galaxies with wide - o transversecocoonscanbegeneratedthroughslowprecessionatlowMachnumbers.Weex- r plore a slow precession model in which the jet direction changes very slowly relative to the t s jetflowdynamicaltime.Thisrevealstwoseparatedbowshockspropagatingintotheambient a medium,oneassociatedwiththeentirelobeexpansionandtheotherwiththeimmediateim- [ pactzone.Thelobesgeneratedaregenerallyconsistentwithobservations,displayingstraight 1 jetsbutasymmetriclobes. v 2 Keywords: hydrodynamics–radiogalaxies 5 0 8 0 1 INTRODUCTION justified the use of two-dimensional numerical simulations (e.g. . 1 Carvalho&O’Dea2002)althoughitisunlikelythatsuchsimula- 0 Radiogalaxiesaresomeofthelargest(Willisetal.1974;Malarecki tionscanaccuratelyreproducetheconsequencesofturbulenceand 6 etal.2013)andmostpowerfulstructures(O’Deaetal.2009)that fluid instabilities (Carvalho & O’Dea 2002) even in this context 1 weobserveintheuniverse.Theirpowerisderivedfromprocesses (Krause & Camenzind 2001). Moreover, the first such adiabatic : in the vicinity of supermassive black holes which lie at the heart v hydrodynamic study demonstrated that the shape of the cocoon of active galactic nuclei (Rees et al. 1982; Rawlings & Saunders i and hot spots continuously change structure (Smith et al. 1985) X 1991). Their power is channelled out through jets containing an asthepressureoftheexpelledgasfeedsbackontotheapproach- r unknownmixtureofhigh-energyplasma,relativisticparticlesand ing jet (Norman et al. 1982). Nevertheless, Hardcastle & Krause a magneticfield,asdeducedfromradiohotspotsandlobeswherea (2013)demonstratedthattwo-dimensionalcalculationscanprovide smallfractionoftheenergyisconvertedintosynchrotronradiation theframeworkinwhichtodiscusstheoverallenergyandpressure (cf.Smith2012).Theyarealsocosmologicallyimportantasevolv- distributions within a non-uniform environment corresponding to ingbeaconsathighredshift(Malareckietal.2013),asregulators propagationthroughagalacticmedium.Theassociatedhighspa- ofgalaxygrowthandwithimplicationsforprocessesinvolvedwith tialresolutionthatcanbeachievedintwodimensionsalsopermits blackholephysics(Smith2012). thesimulationstoberuntogreaterjetlengths. There are many types of radio galaxies and much effort has goneintotheclassificationsystemandassociateddynamicalpro- cesses. Classical examples display approximate jet-axial mirror Asystematicstudyinthreedimensionsathighresolutionmay symmetry (in addition to twin-lobe mirror symmetry) which has helpverifyorcontradictthetrendsfoundintwo-dimensionalsim- ulations.Weexpectsymmetrytobebrokenbyjetprecession(Ek- ersetal.1978)orreorientation(Hodges-Kluck&Reynolds2012), ? E-mail:[email protected], interstellarpressuregradients(Smith&Norman1981),intraclus- † E-mail:[email protected] tergasmotions(Begelmanetal.1979),inter-clustergasdynamics (cid:13)c 2014TheAuthors 2 J.Donohoe&M.D.Smith (Lokenetal.1995)orsimplythroughinstabilityattheimpactin- fiedambientmediumwithinfiveruns.TheyfoundthatlowMach terface. numberjetsaresomewhatmoreeasilydisrupted. However, with only a few three dimensional studies per- Thirdly,thesmoothre-alignment,wobblingorprecessingof formed,manypropertieshaveyettobesystematicallyinvestigated. thejetdirectionhasnotbeengreatlyexploredinthecontextofgi- Thefirstattemptsweredirectedatjetbending(Balsara&Norman antradiogalaxies.Whilecrucialtothestructuresformedbyheavy 1992;Lokenetal.1995).O’Neilletal.(2005)foundthatenergyis (ballistic) jets, the short jet dynamical time in comparison to the transferredefficientlytotheambientmediumwithapproximately lobe dynamical time for light jets implies that precession-related halfofthejetenergybeingconvertedtothermalenergyintheam- phenomena may be more difficult to identify (Gong et al. 2011). bientmedium.Mendygraletal.(2012)analysedthree-dimensional Thus,ratherthangeneratingahelicalstructure,weshouldobserve magnetohydrodynamical simulations of intermittent jets in a tur- curvedorarcuatelobesasifapaintbrushhassweptacrossacan- bulentintraclustermedium.Thisweatherdistortsthejetsandlobes vas (Ekers et al. 1978) or a distinct X-shaped structure (Cheung intomorphologiessimilartowide-angletailradiosourceswhilethe 2007). A combination of re-alignment and intracluster wind may intermittencyleadstofeaturessimilartothoseindouble-doublera- benecessary(Hodges-Kluck&Reynolds2011). diogalaxies.Finally,Hardcastle&Krause(2014)alsoconsidera Welimitthepresentstudytothatofanon-relativisticadiabatic clusterenvironment,takingalowMachnumberjet.Theydemon- flowofauniformsupersonicjet.Thejetisinjectedintoauniform stratethepolarisationpropertiesandshowamajordifferencebe- stationaryambientmedium.Itbeginsperfectlycollimatedfroma tweensynchrotronandinverse-Comptonemissionimages. nozzlewithasimulatedcircularcross-section.Wedonotinclude Inthispaper,weareinterestedinthedynamicalstateofthe pulsations,shearoranorbitingnozzle.Inaddition,magneticand injected jets and the corresponding physical structures generated gravitationalforcesarealsoignored. ratherthantheinfluenceoftheambientmedium.Inasubsequent paper, we investigate the observational predictions including the associatedX-raycavityandtheroleoftheangleoforientationto thelineofsight. 2 METHOD Inthisprogramme,theultimategoalistoprovideasetofra- dioandX-rayimagesofradiogalaxiesatvariousorientationsand 2.1 TheCodes distancesfromtheobserver.Howradiogalaxiesappearathighred- Twoefficientcodesforcomputationalfluiddynamics,suitablefor shiftandclosetothelineofsightwillprovideameansofinterpreta- simulationsurveys,aretestedandemployed.ZEUS-3Disagrid- tionofdatafromthenextgenerationoftelescopes.Canwededuce basedsecond-orderEulerianfinitedifferencecode(Stone&Nor- the causes of observed features, and constrain the mass, momen- man 1992) that uses Van Leer advection and consistent transport tumandenergybudgets?Toachievethis,wefirstrequirethede- ofthemagneticfield.WithvonNeumannandRichtmyerartificial pendenceontheintrinsicflowparameterstobeestablishedbefore viscosityandanupwindedscheme,itisidealforproblemsinvolv- proceedinginafollow-upworktopresentthemorphologies. ingsupersonicflowandisversatile,robustandwell-tested(Clarke Fundamental injection parameters which have yet to be sys- 2010).Althoughhigherordercodesarepotentiallymoreaccurate, tematically studied within three dimensional simulations include thehighspeedofthealgorithmsmeansthatlargeproblemscanbe thedensity,precessionangleandtheMachnumber.Thefirstissue solvedathighresolution. weconfronthereisthedependenceonthejet-ambientdensityratio, Weemployversion3.5ofZEUS-3D(dzeus35)whichisfreely η.Thedensityratioisthoughttobecriticaltotheradiogalaxymor- available for use by the scientific community and can be down- phologywithlowerdensityratiosgeneratingwiderlobesinaself- loadedfromtheInstituteofComputationalAstrophysics(ICA)at similaranalysiswhichassumesthelobesmaintainahighpressure St.Mary’sUniversity,NovaScotia,Canada1. incomparisontotheambientmedium.However,itisnotsupported PLUTO is similarly grid-based but incorporates modern bythetwodimensionalsimulationsofKrause(2003).Inaddition, Godunov-type shock-capturing schemes (Mignone et al. 2007). thereflectionboundaryconditionalongtheplanecontainingthejet After comparing the results of numerous options, we chose a nozzle is crucial since the cocoon material is trapped on the grid fast linear interpolation Hancock time-stepping (denoted HLLC) andawidecavitybuildsup;whereaswithanoutflowcondition,the scheme2. cocoonremainsquitecylindricalanduniformintime.Hardcastle Forthesimulationsthatinvolveonlyadiabatichydrodynamics &Krause(2013)discusstherelevanceoftheself-similarsolutions (HD),sixpropertiesarerecordedtofile:thedensity,ρ,pressure,p, (Begelman & Cioffi 1989), as first raised by Scheuer (1974), in threevelocitycomponents,v ,v andv ,andamass-weightedjet x y z whichthejet-suppliedcocoonmaintainsahighpressureandcon- tracer,χ. cludes that it can be dismissed on observational grounds. This is because,afterabriefinitialstage,thecocoonmaterialhastimeto expandandreadilyreachesapproximatepressurebalancewiththe ambientmedium. 2.2 Scaling Secondly,thejetMachnumberisacrucialparameterasfirst Inordertoadequatelycoverwideprecessingradiosources,webase realisedbyNormanetal.(1983)andstudiedbyBicknell(1985). the simulations on a D3 = 30x30x30 unit volume where the jet ThelatterworkexploredthepossibilitythattheMachnumberde- radius,r ,issettooneunit.Theambientmediumistakentobe jet termines whether a radio source is of type FR-I or FR-II as de- uniform with a sound speed, c , of one unit. This sets the time amb finedbyFanaroff&Riley(1974).IfhotspotsarepresentinFR-Is, scale,r /c ,alsotooneunit.Givenanambientdensityofone jet amb theyoccurclosetothehostgalaxy.whilstFR-IIshaveprominent hotspotsthatoccurfurtherawayfromthehostgalaxyFR-Iradio galaxiestendtohavevisiblejetswhilstFR-IIjetstendtobefaint idatalldetectable.Holdingthejetdensityconstant,O’Neilletal. 1 http://www.ica.smu.ca/zeus3d/ (2005)lookedattheinfluenceofjetMachnumberandthestrati- 2 http://plutocode.ph.unito.it/ MNRAS000,1–17(2014) Thephysicalstructureofradiogalaxiesexploredwiththree-dimensionalsimulations 3 Table1.Theinitialconditions:bothnon-dimensionalparametersandtheirexamplescaledinterpretationstakingajetwithadensityof1%oftheambient density.Theparameternp,amb,isthehydrogennuclei(freeproton)densityintheambientmedium. - unit Compact Giant - value Source Source D 30 75.0kpc 750kpc rjet 1 2.5kpc 25kpc Mjet 6.0 6.0 6.0 ρamb 1 2.3410−26 gcm−3 9.3710−28 gcm−3 camb 1 6.72107 cms−1 8.23107 cms−1 np,amb n/a 1.010−2 cm−3 4.010−4 cm−3 Tamb n/a 2.0107 K 3.0107 K uamb 0.9 9.5310−11 ergcm−3 5.7210−12 ergcm−3 pamb 0.6 6.3510−11dynecm−2 3.8110−12dynecm−2 pjet/pamb 1.00 1.00 1.00 ρjet/ρamb 0.01 0.01 0.01 vjet 60.0 4.03109cms−1 4.94109cms−1 M˙jet 1.88 2.80M(cid:12)yr−1 13.7M(cid:12)yr−1 Pram 113 7.121035dyne 4.271036dyne Ljet 3,562 1.511045ergs−1 1.111046ergs−1 to=rjet/camb 1 3.64Myr 29.7Myr tprecession=2π/ω 4 14.64Myr 118.8Myr tlobe-dynamic=D/U 5 18.18Myr 148.4Myr tjet-dynamic=D/vjet 0.5 1.82Myr 14.8Myr unitand Thevelocitycomponentsarethen c =rγ.pamb, (1) vy =vjet.sin(θ).sin(ωl.t) amb ρ v =v .sin(θ).cos(ω.t) (4) amb z jet l p yields a pressure pamb = 0.6 and internal energy per unit volume vx = vjet2−(vy2+vz2) uamb=0.9forthespecificheatratioofγ=5/3since Theprecessionisaddedatthenozzleofthejetasitentersthe inflowboundary.AsseeninEquation(4),theangleofprecessionis p =(γ−1)u . (2) amb amb θ.Tocoverawiderangeofscenarios,precessionanglesof0.25◦, 1◦,5◦,10◦and20◦areused.Thesmallestprecessionof0.25◦isap- We assume adiabatic media so that all quantities can be scaled. plied to break up any numerical fluctuation when we simulate a We may thus consider whether our simulations represent both a straight jet. By default precession of 1◦, 10◦and 20◦are used for quite compact radio galaxy and a giant source. For the example alldensities;theprecessionof0.25◦and5◦areforamorein-depth parametersdetailedinTable1,thescalesizeanddynamicaltime lookfortheparticularcaseofthedensityratioof0.1.Therateat scalesare75kpcand18Myr(Compact)and750kpcand148Myr whichthejetsprecessissettoadefaultofonceperfourtimeunits. (Giant) The ambient medium parameters are specified through the numberdensityandtemperature,bothconstrainedfromX-raydata. 2.3 Mass,momentumandenergy Wespecifythehydrogennucleidensityhereandaddon10%ofhe- liumnuclei,assumingbothspeciestobefullyionised. Themassfluxinjectedintothesystemis Inthiswork,wedumpthedataevery0.1units,butthisisal- M˙ =ρ ·v ·A, (5) jet jet x teredaccordingtotherateofpropagationofthejetacrossthegrid. Thistranslatesto1dumpfileroughlyevery0.36Myrs(Compact where ρjet is the input jet density, vx is the jet velocity normal Source)and3.0Myr(GiantSource). to the boundary, which is obtained from Equation (3), and A = Amajoraimistoinvestigatetheinfluenceofjetprecessionon (1−µ)πrj2et isthejetarea.Here,µrepresentsasmalladjustment themorphologyoftheradiogalaxy.Theprecessionisaddedinto sincethenumericalnozzleprofileisanapproximationtoacircle. thesystembysplittingthevelocityupintocomponents.Toachieve Therewillbealinearincreasewithtimeforallthesimulationswith this,thefulljetspeedistakentobe reflective outflow boundaries because the mass influx is constant throughoutthepresentsetofsimulations.Withanoutflowbound- r r p ρ arycondition,thecocoonbackflowremovesmassfromthegrid, v =M ·c =M · jet · amb ·c , (3) jet jet jet jet p ρ amb asdiscussedbelow. amb jet In order to test and calibrate the results, we introduce the wherep ,ρ andM arethepressure,densityandMachnum- SteadyPropagationModel.Themodelassumesthatthejetploughs jet jet jet berofthejet,respectively.ThejetspeediscalculatedusingMach into the ambient medium, advancing a high-pressure hot spot at numbersof2,4,6,8,12,24and48. a constant speed. To understand how the jet and lobe propagate MNRAS000,1–17(2014) 4 J.Donohoe&M.D.Smith Table2.Breakdownofsimulationnamesandmainparametersthatareusedinthispaper.”z”inthefilenamesignifiesareflectiveinflowboundary CodeUsed FileName DirectoryName Resolution DensityRatio Mach Precession π (rad) 180 Both zaa xyz1 75x75x75 0.1 6 1 Both ba xyz1 150x150x150 0.1 6 1 Both bb xyz01 150x150x150 0.01 6 1 Both bc xyz001 150x150x150 0.001 6 1 Both bd 10xyz1 150x150x150 0.1 6 10 Both bg 20xyz1 150x150x150 0.1 6 20 Both bm xyz0001 150x150x150 0.001 6 1 Both bn 10xyz0001 150x150x150 0.1 6 10 Both bo 20xyz0001 150x150x150 0.1 6 20 Both zbm Rxyz0001 150x150x150 0.001 6 1 Both zbn 10Rxyz0001 150x150x150 0.1 6 10 Both zbo 20Rxyz0001 150x150x150 0.1 6 20 Both zba Rxyz1 150x150x150 0.1 6 1 Both zca Rxyz1 225x225x225 0.1 6 1 Both zda Rxyz1 300x300x300 0.1 6 1 PLUTOCODE ea xyz1 150x150x150 0.1 2 1 PLUTOCODE ed 10xyz1 150x150x150 0.1 2 10 PLUTOCODE ee 20xyz1 150x150x150 0.1 2 20 PLUTOCODE fa xyz1 150x150x150 0.1 4 1 PLUTOCODE fd 10xyz1 150x150x150 0.1 4 10 PLUTOCODE fe 20xyz1 150x150x150 0.1 4 20 PLUTOCODE ga xyz1 150x150x150 0.1 8 1 PLUTOCODE ha xyz1 150x150x150 0.1 12 1 PLUTOCODE ia xyz1 150x150x150 0.1 24 1 PLUTOCODE id 10xyz1 150x150x150 0.1 24 10 PLUTOCODE ie 20xyz1 150x150x150 0.1 24 20 PLUTOCODE ja xyz1 150x150x150 0.1 48 1 throughtheambientmedium,wealsoassumeherethatthejetden- Acocooncanusuallybeeasilyidentifiedwitharadiogalaxy sity is low and the Mach number is high. We then write the jet simulation. This is filled with the jet material which has been momentumflowratealongtheaxisintermsoftheramforce shocked at the hot spot and spills out into a lobe or cocoon im- mediately surrounding the jet. The cocoon is thus distinct from P˙ =ρ ·v2·A. (6) jet x theshockedambientmaterial,asoriginallydefined(Normanetal. Thiscanbewrittenintheform 1982),butdoesnotincludetheshockedambient(astakenbyCioffi &Blondin(1992)). v2 P˙ =ρjet· vj2xet ·M2·c2jet·A. (7) rj2et)DIfwthheecreocRoco(nt)isiscythlienrdoroict-aml,ethaen-vsoqluuamreeatvheernaggerocwoscoaosnπr(aRdc2iu−s. Inthismodel,wetakep =p sothat Wealsoassumethatthejetflowisbrakedatthehotspotbyastrong jet amb shockwithacompressionratioof(γ+1)/(γ−1)=4andahot- P˙ =ρ ·c2 · vx2 ·M2 ·A. (8) spotpressureof2γMj2etpjet/(γ +1).Thisisfollowedbyanadia- amb amb v2 jet baticpressurefallbacktotheambient/jetpressure.Theassociated jet densitydecreasedirectlyyieldsthecocoondensityas Thatmeansthatthemomentumflowrateisroughlyaconstantfor afixedMachnumber,independentofthejetdensity.Remarkably, (cid:20) (cid:21)1/γ γ+1 γ+1 thisimpliesthatthejetcrossingtimeofalllow-precessionsimu- ρc = γ−1 2γM2 ρjet, (11) lationsofagivensizeandMachnumberisaconstant.Thespeed jet scale,Ufortheadvanceoftheradiogalaxyisgivenbythemomen- or,forγ =5/3, tumbalanceformula, (cid:16)4(cid:17)3/5 U2 = ρρjet ·vx2 =Mj2et·c2amb, (9) ρc =4 5 Mj−et6/5ρjet. (12) amb Underareflectionboundarycondition,weequatetheinjected whichassumesthatthejetremainscollimatedandpropagateswith masstothecocoonmass,whichthenyieldsthecocoonvolumeand adragcoefficientofunity.Thisyieldsaradiogalaxycrossingtime manipulationthenyieldstheaveragecocoonradiusthrough of D/U =D/(Mjet·camb). (10) R =r (cid:20)1+ 53/5M6/5(ρamb)1/2(cid:21)1/2. (13) c jet 48/5 jet ρ jet Therefore, we expect the jet crossing time to be approximately 5 unitsfortheD=30gridandM =6jet. Itcanthusbeseenthatevenwithjet-ambientdensityratiosofbe- MNRAS000,1–17(2014) Thephysicalstructureofradiogalaxiesexploredwiththree-dimensionalsimulations 5 tween 0.1 and 0.0001, a Mach 6 jet would generate an averaged dumpswiththereflectionboundaryconditionapplied.Thetracer cylindricallobeofradiusofbetween3.0and15.7r . providesanaverageforzoneswheremixingoccurswiththeambi- jet Theassumedpressureequilibriumwiththeambientmedium, entmediumwhileambientmasslossfromthegridatlatetimesis however, cannot be established if the cocoon is too wide, occu- discounted.Jetmaterialdoesnotleavethegridsincethereflection pyingtheregionwhichtheshockedambientmediumwouldhave boundary condition is applied across the entire inner plane upon expandedinto.Insteadtheshockedambientmediumdoesnotre- whichthejetnozzleisthensuperimposed. expand and so applies a surface pressure on the cocoon. Equa- Figure1showsthatthereisacleardiscrepancywiththetheo- tion13impliesthatthiswilloccuratverylowjetdensitiesorex- reticalmassinflowof5.96perunittimeassumingaperfectcircular tremelyhighMachnumbers. nozzleofradiusr asshownbythesolidlines.Thecauseofthe jet Theenergypumpedontothegridisconvertedordivertedinto discrepancyismadeclearfromthedependenceontheresolution. severalcomponents.Theaddedenergyiscontainedintheambient Astheresolutionisincreased,themassinflowrateconvergesto- medium, cocoon or jet. For each, we have contributions to both wards a value within a few per cent of the theoretical value for thethermalandkinetic(turbulent)energy.Toobeyconservationof the PLUTO code (right panel). However, this value is lower for energy,weneedtoaccountforanyenergylostthroughthebound- theZEUSruns(leftpanel):theZEUS-3Drunsconvergeunderthe aries,althoughthisiszeroprovidednodisturbanceshavereached theoretical line whereas the PLUTO code is converging onto the theouterboundariesandwehaveimposedareflectioninnerbound- theoreticalline.Inbothcases,wecanseetheinjectedmassstarts arycondition.Thetotalpoweraddedtothegridis: toconvergeataresolutionof1503. Eachcodesetsupthecircularjetnozzleonthesquarefaces (cid:18) (cid:19) oftheentryzonesbyapplyingadifferentapproximationscheme. 1 1 p L= 2vj2et+ γ−1ρjet ·vx·ρjet·A, (14) Asmoothingprofileisusedtofixthespeedandmassmixinginthe jet interfacezones.Theresolutionthusinfluencesthemassinflowac- which,ontakingv =v forsimplicity,canbewritten cordingtothenumberofzonesacrossthejetdiameterN/Dwhere x jet N is the grid resolution. Fig. 1 shows that the mass discrepancy (cid:18) (cid:19) (cid:18) (cid:19)1/2 L= 1 + 1 1 1 · ρamb ·M3·ρ ·c3 ·A. (15) is approximately ∝ (D/N)2. This result highlights the fact that 2 γγ−1Mj2et ρjet jet amb amb jet simulations are extremely sensitive to the frayed edges of the jetsurfacewhichmayintroduceinstabilitiesandsmall-scaleturbu- Again,notethelowdependenceonthedensityratioandthestrong lence on larger scales much further downstream. For this reason, dependenceonMachnumber.InSection5,wewilldeterminehow wedonotexpectanytwocodes,letaloneanytworesolutionswith thisenergyisredistributed. the same code, to generate exactly the same physical structures. RadiomapsandX-rayimageswillbederivedfromthesesim- However, some of this sensitivity is clearly eliminated at higher ulationsinafollowingwork.Here,weutilisepseudo-synchrotron resolutions. radioemissionbytakingtheemissionperunitzonevolumeas Inthelowresolutionruns,thelackofdetailandtheaveraging Eradio ∝χ·p2, (16) oftheeddycurrentsthatoccurattheinterfaceofthejetandambient materialareclear.Asonewaytoquantifythis,westudythemaxi- wherethetracerχissetsothattheambienthasavalueof0and mumintensityofthe“hotspot”onthepseudo-synchrotronimages, 100% jet is set to a value of 1, thus only selecting zones where andthedistanceofthathotspotfromthesourceasafunctionof thereismaterialoriginatingfromjetinjectionbutnotaccounting the resolution. This is a surface brightness and, hence, would be forshockacceleration.Bysummingtheemissivitythroughaspe- expectedtoincreasegraduallyastheresolutionincreases.Thisis cificdirectionweobtainemissionmapsandcanthusfindtheloca- displayedinFigure2forZEUS-3DandPLUTO.Thereareconsid- tionofthemaximumintensitywhichweusebelowasaquantitative erablevariationsasexpectedalthoughthesevariationsdecreaseas measureofthenumericalconvergence. thejetradiusbecomesbetterresolved.Thereisanindicationthat Alistofsimulationsandtheirnamingconventionsisprovided PLUTOstartstoconvergeatresolutiongreaterthan2253. inTable2.Therearetwomainnamesforeachjetsimulation.The This is further supported when the advance of the ambient first is the file name that ZEUS-3D uses which is carried over to shock front is plotted, as shown in Fig. 3. The advance speed is thePLUTOcode.Thesecondiscomprisedofthreeparts[preces- stablebetweentheresolutionrunsafteraninitialset-upperioddur- sion][coordinatesystem][densityratio].Also,ifthereisareflective ingwhichthespeedoftheabruptentrancedependsonthegridzone boundaryaddedtothesimulationthenan“R”isaddedtothecorre- sizeasthecodesmoothsoverthesteepgradientsintroduced.The spondingcoordinate.Forexample,20Rxyz01refersto20◦preces- advancespeedsettlestoaconstantvalueof∼4.7and4.3forthe sioninCartesiancoordinatewithareflectioninthestartingplaneof ZEUS-3DandPLUTOcodes,respectively.Thisislowerthanthe thejetwithadensityratioof0.01.Notethatthereflectioncondition valueofU =6fortheSteadyPropagationModel.However,aswill isonlyappliedtotheboundarywherethejetisinitialized. befoundbelow,advancespeedsinexcessofU arefoundforlower jet densities and, in contrast, can also be higher for the PLUTO code.Insummary,withspecificreservations,the1503resolutionis 3 RESOLUTION&CONVERGENCE thepreferredchoiceforafullnumericalsurvey. Resolutions studied span the range from 753 to 3003. Our workhorseisthe1503simulation.Thispermitsustocoverasmuch groundaspossibleandfollowupwithhigherresolutionsonanyin- teresting findings. The wide range allows us to test the influence 4 PARAMETERSTUDY oftheresolutiononthemorphologyofthejet.Allthesimulation 4.1 Density whichareillustratedhavetheconditionsoutlinedinTable2. The accumulated mass injected as a function of time is dis- The dependence on the jet-ambient density ratio is illustrated in played in Fig. 1. It is calculated from the grid density and tracer thedensityslicesdisplayedinFigs. 4&5andthecorresponding MNRAS000,1–17(2014) 6 J.Donohoe&M.D.Smith Figure1.Thetotalmassonthegridasafunctionoftimeforthereflectionboundaryconditionontheinflowboundary,generatedfortheindicatedfour resolutions.Thedensityratioisρjet/ρamb =0.1andtheprecessionangleis1◦.TheleftpaneldisplaysZEUS-3DandtherightshowsthePLUTOcode.The solidblacklinecorrespondstothetheoreticalvaluethatshouldbeinjectedintothesystemthroughaperfectcircularcross-section. Figure2.Themaximumintensityofthehotspotandthedistanceofthathotspottothesource.LeftgraphshowsZEUS-3D;rightshowsPLUTOresults. Thesetestswereperformedwithareflectioninflowboundary. Figure3.Aresolutionstudyofthelocationoftheadvancingshockintotheambientmediumforthecasewithjet-ambientdensityratioof0.1andoutflow boundarycondition.Theresolutionsshownincreasefrom753(solid,black)to3003(dot-dash,green)withtheinitialconditionsoutllnedinTable2.Theleft panelisZEUS-3DcodeandtherightpanelisthePLUTOcode. MNRAS000,1–17(2014) Thephysicalstructureofradiogalaxiesexploredwiththree-dimensionalsimulations 7 (a) (b) (c) Figure4.Densitydependence.Densityvolumetricslicesthroughthemid-planefromZEUS-3Dwithequivalentconditionsapartfromthejet-ambientdensity ratioof0.1(a),0.01(b)and0.001(c).AllhaveajetMachnumberof6,asmallprecessionangleof1◦andperiodof4simulationunitsinordertobreakthe symmetry.ConditionsareoutlinedinTable2.Thelimitsofthecolourscalearesettothespecificsimulationminimumandmaximumvalues. (a) (b) (c) (d) Figure5.Densitydependence.DensityvolumetricslicesfromthePLUTOcodewithequivalentconditionsapartfromthejet-ambientdensityratioof0.1(a), 0.01(b),0.001(c)and0.0001(d).ConditionsareasstatedinFig.4. velocityslicesofFigs. 6&7.Thesecorrespondtostraightcolli- oncomparisonofslice(b)betweenFigs. 4&5.Thereisatime matedjetswithasuperimposedsmall-anglelong-periodprecession differenceof0.8unitsor2.9MyrsfortheCompactSourcedespite tobreakthesymmetry. thesameinitialcondition.ItcanbeseenfromthePLUTOfigures Thedensityslicesshowthatthereisamodestincreaseinthe thatthejetsthemselvesaremorestablecomparedtotheZEUScode volumeofthecocoonoccupiedbyjetmaterialasthedensityratio simulations.Thismeansthatthemomentumisefficientlypushing decreasesbelow0.01.Thebowshockintheambientmediumalso theheadofthejetintonewambientmaterialratherthandissipating becomesprogressivelyblunterasthejetdensityfalls. theenergytocreateawideningplume. Thenarrowcocoonassociatedwithdensityratiosabove0.001 Theadvancespeedincreasesbyasignificantfactorastheden- ensuresthatthejetpropagateswithlittledissipationacrossthejet- sityratioisloweredfrom0.1.Butthistrendisreversedforthevery cocoon vortex sheet. In contrast, at lower densities, the cocoon lowest density where the asymmetric structure leads to a spread- broadening is associated with the generation of large asymmetric ingandpartialdisruptionofthejetwhichslowsdowntheadvance. vorticeswhichfinallydominateforthedensityratioof0.0001.This Incomparison,fromtheSteadyPropagationModelwewouldan- broadcocoonexpansionforverylightjets,typicallytoalmostthe ticipateaconstantspeedofadvance.Thedifferenceisassociated samesizeasthebowshock,wasfirstfoundinaxisymmetricsim- withpressurefeedbackontothejetwhichsqueezesthejetasseen ulationsofKrause(2003)forMachnumbersaboveapproximately from the velocity structure in panels (b) and (c) of Figs. 6 & 7. three.Thewidecocoonsupportsahighpressureandstrongpres- The higher advance speed also tends to streamline the cocoon as surevariationswhichfeedbackontothejet.Thejetaxialvelocity material flowing into the cocoon does not have to expand so far becomes limited to a narrower and convergent-divergent channel laterally.Afurtherconsequenceisthatthecocoon-jetdensityratio (seeFigs. 6and7)asthecocoonpressuredominates. generallyincreasesasthejetdensitydecreases(seetheassociated colourbars). Thedifferencesbetweenthetwocodesarequitemodestwith thePLUTOsimulationssomewhatmoreaerodynamicinshapeand We thus confirm here that a wide range in jet density has a speedacrossthegridforaspecificdensityratio.Thisisconsistent relativelysmallaffectonthepropagationspeedofthelobes.This withthebettersmoothingprofileacrossthenozzleinterfaceofthe is because the injected momentum flow rates are the same. This PLUTO code. The difference between the two codes is apparent isduetothejetdensitybeinginverselyproportionaltothesound MNRAS000,1–17(2014) 8 J.Donohoe&M.D.Smith (a) (b) (c) Figure6.VelocityvolumetricslicesfromZEUS-3Dwithequivalentconditionsbarfromthedensityratioof0.1(a),0.01(b)and0.001(c).Otherconditions areasstatedinFig.4. (a) (b) (c) (d) Figure7.VelocityvolumetricslicesfromPLUTOCODEwithequivalentconditionsbarfromthedensityratioof0.1(a),0.01(b),0.001(c)and0.0001(d). OtherconditionsareasstatedinFig.4. speedsquaredofthejet.Sodecreasingthedensityratioincreases thejetisindependentofthejetdensityintheSteadyPropagation thevelocityofthejetsincetheMachnumberisheldataconstant Model(Eq.7).However,themomentumflowratethroughthejet value,asseenfromEquation3.Thisisalsoevidentfromtheveloc- isproportionaltotheMachnumbersquared.Therefore,theMach ityslicesdisplayedinFigs. 6and7.Theresultisapparentwhen numbershouldbetheparameterwhichcontrolsthejetstrengthand lookingatthefourdensityratiosimulationsofPLUTO(Fig.5).It advancespeed.ThisisindeedthecaseasshowninFig.10forthe showsthatthetimeittakesforthedensityratioof0.1,0.01,0.001 densityratioof0.1. and 0.0001 correspond to 18.1, 11.6, 11.9 and 15.2 Myr, respec- At Mach numbers below 4, the cocoon is stripped from the tively when interpreted as compact radio sources. Thus the mo- jet through Kelvin-Helmholtz instabilities. This confirms the 2D mentumofthejetisthekeyfactorinthepropagationdistanceof resultsfirstdiscussedbyNormanetal.(1982)andtheworkdone theheadofthejet. byRossietal.(2008)whereinlowerMachnumberswillresultin Thepressuredistributionsdisplaymorevariety,asdisplayed FR-ItypesduetothedecelerationofjetmaterialclosertotheAGN in Figs. 8 and 9. While similar ambient bow shocks are present source. for the jet-ambient density ratio of 0.1 (left panels), the ambient AthighMachnumbers,theentirestructurereacheshighas- bow is wider in the ZEUS runs although the maximum pressure pect ratios. At Mach numbers in excess of 8, the feedback effect reachedislower.Hence,theresultsaresensitivetotheprecisecon- from the cocoon becomes increasingly evident. However, the dy- ditionswiththePLUTOcodegeneratingslightlymorecollimation namical time for the ambient medium is just t = 1 (3.64 Myr o and less jet-cocoon turbulence at the lower densities. Finally, the forthecompactsystem).ThisimpliesthehighMachnumberflows high pressure created at the lowest density (right panel) perturbs penetrate all the way through the ambient medium before sound theunder-pressuredjet,leadingtothestrongpressurevariationsall signalscancrossadistanceequaltothejetradius.Inthiscase,the alongthejet,typicalofaconvergent-divergentnozzle. cocoon has insufficient time to expand and the pressure is high. Consequently, there is high pressure feedback from the cocoon whichsqueezesonthejetbeforetheterminatinghotspotasthese 4.2 ParameterStudy:Machnumber jetsareclearlystillintheinitialblastphase. For a fixed Mach number and pressure balance between the in- In summary, the Mach number has a profound influence on jectedjetandambientmedium,themomentumflowratethrough the morphology of a radio galaxy. High Mach numbers generate MNRAS000,1–17(2014) Thephysicalstructureofradiogalaxiesexploredwiththree-dimensionalsimulations 9 (a) (b) (c) Figure8.PressurevolumetricslicesfromZEUS-3Dwiththeconditionsthesameapartfromthedensityratio.Slice(a)showsadensityratioof0.1,(b)isa ratioof0.01and(c)isaratioof0.001.OtherconditionsareasstatedinFig.4. (a) (b) (c) (d) Figure9.PressurevolumetricslicesfromPLUTOwiththeconditionsthesameapartfromthedensityratio.Slice(a)showsadensityratioof0.1,(b)isaratio of0.01and(c)isaratioof0.001and(d)isaratioof0.0001.OtherconditionsareasstatedinFig.4. highlyaerodynamicandsymmetricsourcesaswellasnarrowX-ray wheretheprecisenumericalnozzleshape,turbulenceandinstabil- cavities.LowMachnumbersgenerateasymmetricturbulentlobes. itydominateoverdynamicalconditions. Alowrateofprecessionincomparisontothedynamicaltime generates structure similar to the standard straight jet simulation (e.g.rightpanelsofFig.13).Ahighprecessionraterelativetothe 4.3 ParameterStudy:Precession dynamicaltimeistheleadingcauseofthechangeofmorphology ofthejets.Thestandardperiodofprecessionof4simulationunits Withtheprecession-inducedjetwobbling,asdefinedbyEquations impliesthatthereisonlyjustoveronecompleteturnofthejetover 3&4,newstructureoccurs.Themostobviousisthegreateramount thetypicalpropagationtimeofthestructurewhilethejetgastakes ofmixingthatoccursascomparedtoarelativestraightjet.Thisis onlyD/v =1.7unitsforthejet-ambientdensityratioof0.1and achieved through both of the defining parameters, the first being jet Machnumberof6.Hence,whilethecocoonisdistorted,thejets theangleatwhichthejetprecessesandthesecondistheratethe donotdisplaysignaturesofacorkscreworhelicalstructure. jetprecesses. Theoverallstructureofthelobe/cocoonchangesastheangle Asthejetprecesses,newpartsarecomingintocontactwith at which the jet precesses increases, as shown in Figs. 11 & 12. older ejected parts of the jet as it impacts the ambient material, Theanglespreadsthemomentumandsolimitsthedistancethejet asseenfromthemultiplebowshocksinFigures11&12.Thisis propagates with time. It also causes the cocoon of the jet to ex- causing a distorted but continuous bow shock to trace where the pandandincreasesthetotalamountofmixingthatcanoccur.The jetmaterialiscomingintocontactwithdensermaterial.Asthejet twofiguresestablishthatthecodeemployedhasminimalinfluence thenreturnstoapreviouslyexcavatedcavity,ithastoexpendless onthestructuregeneratedoncealargeprecessionangleisapplied. energyasthecavityisalsoexpandingtowardstheambientmedium. Theinitialstateisonlyimportantfortheonedegreeprecessioncase This then results in the cocoon being made of stacked layers of MNRAS000,1–17(2014) 10 J.Donohoe&M.D.Smith (a) (b) (c) (d) (e) (f) (g) Figure10.Machnumberdependence.DensityvolumetricslicesfromthePLUTOcodewithequivalentconditionsbarfromMachnumbersof2(a),4(b),6 (c),8(d),12(e),24(f)and48(g).Thesamecolourbarappliestoallslices.OtherconditionsareasstatedinFig.4. jet material rather than being just the result of Kelvin-Helmholtz thus expect such slow precession to lead to interesting radio and instabilities. X-raystructures. Theseeffectsarehighlightedwhenstudyingtheprecessionat Astheprecessionangleincreasesthereisalsoanincreasing high Mach numbers. Figure 13 takes a sample of Mach number cone-shapedindentedregionatthesymmetricheadofthejet,the fromFig.(10)andshowshowprecessionconfinestheheadofthe pointatwhichthereis”symmetry”aroundthecentreofprecession. jetclosertothesourceofthematerial.TheMach24jet,column Thisregiondiminishesovertimedependingontheratethejetpre- ’c’onFigure13,beingoneoftheupperendMachnumbers,has cesses. This region plays an interesting role with precessing jets. its propagation length roughly halved when precessed from 1◦to As the jet precesses we are left with a void that traces the wake. 20◦.Ontheotherhand,thelowMachnumbercasesdisplayedin Thislowpressureregionisthenfilledinbysurroundingmaterial. column‘a’,displayatrendofincreasingbreak-upandplumeflow Thismaterialcancomefromtheconeregioneffectivelydetaching astheprecessionangleincreases. partsofthecocoonfromthemainstructure. Remarkably,twobowshockscanbedistinguishedintheam- bientmedium.Thefirstisthestandardadvancingbowshockwhich 5 ENERGY envelopstheentireoutflow.Thesecondfollowingbowshockisas- sociatedwiththepresentpointofimpactofthejet.Thisinnerbow Thedistributionsoftheenergyinajet-drivensystemhasbeenstud- isnarrowerbutseenprominentlyinthepressurepanelofFig.14 ied by many authors in order to provide evidence on how radio andisconfirmedaspureambientmaterialviathetracerpanel.We galaxiesandtheambientmediaevolve.Oneconcernisthedynam- MNRAS000,1–17(2014)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.