ebook img

The one-dimensional Hubbard model PDF

692 Pages·2005·3.55 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The one-dimensional Hubbard model

This page intentionally left blank THE ONE-DIMENSIONAL HUBBARD MODEL The description of a solid at a microscopic level is complex, involving the interaction of a huge number of its constituents, such as ions or electrons. It is impossible to solve the correspondingmany-bodyproblemsanalyticallyornumerically,althoughmuchinsightcan be gained from the analysis of simplified models. An important example is the Hubbard model, which describes interacting electrons in narrow energy bands, and which has been appliedtoproblemsasdiverseashigh-T superconductivity,bandmagnetismandthemetal- c insulatortransition. Remarkably,theone-dimensionalHubbardmodelcanbesolvedexactlyusingtheBethe ansatz method. The resulting solution has become a laboratory for theoretical studies of non-perturbativeeffectsinstronglycorrelatedelectronsystems.Manymethodsdevisedto analysesucheffectshavebeenappliedtothismodel,bothtoprovidecomplementaryinsight intowhatisknownfromtheexactsolutionandasanultimatetestoftheirquality. Thisbookpresentsacoherent,self-containedaccountoftheexactsolutionoftheHubbard modelinonedimension.Theearlychaptersdevelopaself-containedintroductiontoBethe’s ansatzanditsapplicationtotheone-dimensionalHubbardmodel,andwillbeaccessibleto beginninggraduatestudentswithabasicknowledgeofquantummechanicsandstatistical mechanics. The later chapters address more advanced topics, and are intended as a guide forresearcherstosomeofthemorerecentscientificresultsinthefieldofintegrablemodels. The authors are distinguished researchers in the field of condensed matter physics and integrable systems, and have contributed significantly to the present understanding of the one-dimensionalHubbardmodel. Fabian Essler isaUniversityLecturerinCondensed MatterTheoryatOxfordUniversity. Holger Frahm isProfessorofTheoreticalPhysics at the University of Hannover. Frank Go¨hmann is a Lecturer at Wuppertal University, Germany. Andreas Klu¨mper isProfessorofTheoreticalPhysicsatWuppertalUniver- sity. Vladimir Korepin isProfessorattheYangInstituteforTheoreticalPhysics,State UniversityofNewYorkatStonyBrook,andauthorofQuantumInverseScatteringMethod andCorrelationFunctions(Cambridge,1993). THE ONE-DIMENSIONAL HUBBARD MODEL FABIAN H. L. ESSLER OxfordUniversity HOLGER FRAHM UniversityofHannover FRANK GO¨ HMANN WuppertalUniversity ANDREAS KLU¨ MPER WuppertalUniversity VLADIMIR E. KOREPIN StateUniversityofNewYorkatStonyBrook    Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press   The Edinburgh Building, Cambridge , UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521802628 © F. H. L. Essler, H. Frahm, F. Göhmann, A. Klümper and V. Korepin 2005 This book is in copyright. Subject to statutory exception and to the provision of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published in print format 2005 - ---- eBook (EBL) - --- eBook (EBL) - ---- hardback - --- hardback Cambridge University Press has no responsibility for the persistence or accuracy of  s for external or third-party internet websites referred to in this book, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Contents Preface pagexi 1 Introduction 1 1.1 OntheoriginoftheHubbardmodel 1 1.2 TheHubbardmodel–aparadigmincondensedmatterphysics 5 1.3 Externalfields 11 1.4 Conclusions 14 AppendicestoChapter1 15 1.A Responsetoexternalfields 15 2 TheHubbardHamiltoniananditssymmetries 20 2.1 TheHamiltonian 20 2.2 Symmetries 25 2.3 Conclusions 35 AppendicestoChapter2 36 2.A Thestrongcouplinglimit 36 2.B Continuumlimits 45 3 TheBetheansatzsolution 50 3.1 TheHamiltonianinfirstquantization 51 3.2 Solutionofthetwo-particleproblem 54 3.3 Many-particlewavefunctionsandLieb-Wuequations 64 3.4 Symmetrypropertiesofwavefunctionsandstates 67 3.5 Thenormoftheeigenfunctions 68 3.6 Conclusions 72 AppendicestoChapter3 73 3.A Scalarproductsandprojectionoperators 73 3.B DerivationofBetheansatzwavefunctionsandLieb-Wuequations 76 3.C Sometechnicaldetails 94 3.D HighestweightpropertyoftheBetheansatzstateswithrespectto totalspin 96 3.E ExplicitexpressionsfortheamplitudesintheBetheansatzwave functions 101 v vi Contents 3.F Lowestweighttheoremfortheη-pairingsymmetry 105 3.G LimitingcasesoftheBetheansatzsolution 112 4 Stringhypothesis 120 4.1 Stringconfigurations 121 4.2 Stringsolutionsasboundstates 125 4.3 Takahashi’sequations 128 4.4 CompletenessoftheBetheansatz 131 4.5 Higher-levelBetheansatz 133 AppendicestoChapter4 134 4.A Ondeviationsfromthestringhypothesis 134 4.B Detailsabouttheenumerationofeigenstates 137 5 ThermodynamicsintheYang-Yangapproach 149 5.1 Apointofreference:noninteractingelectrons 149 5.2 ThermodynamicBetheAnsatz(TBA)equations 153 5.3 Thermodynamics 161 5.4 Infinitetemperaturelimit 162 5.5 Zerotemperaturelimit 163 AppendicestoChapter5 168 5.A Zerotemperaturelimitforε(cid:2)((cid:3)) 168 1 5.B Propertiesoftheintegralequationsat T = 0 168 6 Groundstatepropertiesinthethermodynamiclimit 175 6.1 Apointofreference:noninteractingelectrons 175 6.2 Definingequations 177 6.3 Groundstatephasediagram 178 6.4 Densityandmagnetization 184 6.5 Spinandchargevelocities 187 6.6 Susceptibilities 188 6.7 Groundstateenergy 193 AppendicestoChapter6 195 6.A Numericalsolutionofintegralequations 195 6.B Groundstatepropertiesinzeromagneticfield 197 6.C Smallmagneticfieldsathalffilling:applicationofthe Wiener-Hopfmethod 202 7 Excitedstatesatzerotemperature 209 7.1 Apointofreference:noninteractingelectrons 210 7.2 Zeromagneticfieldandhalf-filledband 211 7.3 Rootdensityformalism 225 7.4 Scatteringmatrix 236 7.5 ‘Physical’Betheansatzequations 242 7.6 Finitemagneticfieldandhalf-filledband 244 7.7 Zeromagneticfieldandlessthanhalf-filledband 253 7.8 Finitemagneticfieldandlessthanhalf-filledband 261 7.9 Emptybandintheinfinitevolume 262 Contents vii AppendicestoChapter7 265 7.A Relatingroot-densityanddressed-energyformalisms 265 7.B Lowerboundsforε (0),n ≥ 2athalffillinginafinitemagneticfield 267 n 8 Finitesizecorrectionsatzerotemperature 268 8.1 Genericcase–therepulsiveHubbardmodelin amagneticfield 268 8.2 Specialcases 276 8.3 FinitesizespectrumoftheopenHubbardchain 283 8.4 Relationofthedressedchargematrixtoobservables 290 AppendicestoChapter8 294 8.A WienerHopfcalculationofthedressedcharge 294 9 Asymptoticsofcorrelationfunctions 297 9.1 Lowenergyeffectivefieldtheoryatweakcoupling 297 9.2 Conformalfieldtheoryandfinitesizescaling 303 9.3 Correlationfunctionsoftheone-dimensionalHubbardmodel 308 9.4 Correlationfunctionsinmomentumspace 320 9.5 CorrelationfunctionsintheopenboundaryHubbardchain 324 AppendicestoChapter9 331 9.A Singularbehaviourofmomentum-spacecorrelators 331 10 Scalingandcontinuumlimitsathalf-filling 333 10.1 Constructionofthescalinglimit 333 10.2 TheS-matrixinthescalinglimit 335 10.3 Continuumlimit 337 10.4 Correlationfunctionsinthescalinglimit 344 10.5 Correlationfunctionsinthecontinuumlimit 361 10.6 Finitetemperatures 367 AppendicestoChapter10 369 10.A Currentalgebra 369 10.B Two-particleformfactors 371 10.C CorrelationfunctionsintheGaussianmodel 372 11 Universalcorrelationsatlowdensity 376 11.1 TheHubbardmodelinthegasphase 377 11.2 Correlationfunctionsoftheimpenetrableelectrongas 383 11.3 Conclusions 392 12 ThealgebraicapproachtotheHubbardmodel 393 12.1 Introductiontothequantuminversescatteringmethod 393 12.2 Shastry’sR-matrix 411 12.3 Gradedquantuminversescatteringmethod 425 12.4 TheHubbardmodelasafundamentalgradedmodel 440 12.5 Solutionofthequantuminverseproblem 450 12.6 OnthealgebraicBetheansatzfortheHubbardmodel 452 12.7 Conclusions 470 AppendicestoChapter12 472 viii Contents 12.A AproofthatShastry’sR-matrixsatisfiestheYang-Baxterequation 472 12.B Aproofoftheinversionformula 479 12.C Alistofcommutationrelations 484 12.D Someidentitiesneededintheconstructionofthetwo-particle algebraicBetheansatz-states 484 12.E AnexplicitexpressionforthefermionicR-operator oftheHubbardmodel 486 13 Thepathintegralapproachtothermodynamics 488 13.1 Thequantumtransfermatrixandintegrability 489 13.2 TheHeisenbergchain 496 13.3 Shastry’smodelasaclassicalanalogueofthe1dHubbardmodel 509 13.4 Diagonalizationofthequantumtransfermatrix 510 13.5 Associatedauxiliaryproblemofdifferencetype 514 13.6 Derivationofnon-linearintegralequations 519 13.7 Integralexpressionfortheeigenvalue 525 13.8 Numericalresults 536 13.9 Analyticalsolutionstotheintegralequations 547 13.10 Conclusions 555 AppendicestoChapter13 557 13.A DerivationofTBAequationsfromfusionHierarchyanalysis 557 13.B Derivationofsingleintegralequation 560 14 TheYangiansymmetryoftheHubbardmodel 563 14.1 Introduction 563 14.2 Thevariable-range-hoppingHamiltonian 564 14.3 ConstructionoftheYangiangenerators 566 14.4 Specialcases 570 14.5 Conclusions 573 AppendicestoChapter14 575 14.A Yangians 575 15 S-matrixandYangiansymmetryintheinfiniteintervallimit 599 15.1 Preliminaries 599 15.2 Passagetotheinfiniteinterval 600 15.3 Yangiansymmetryandcommutingoperators 605 15.4 ConstructingN-particlestates 607 15.5 EigenvaluesofquantumdeterminantandHamiltonian 617 15.6 Conclusions 617 AppendicestoChapter15 618 15.A Someusefulformulae 618 16 Hubbardmodelintheattractivecase 620 16.1 Half-filledcase 622 16.2 Thegroundstateandlowlyingexcitationsbelowhalffilling 625 16.3 Interactionwithmagneticfield 626

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.