ebook img

The Occurrence, Analysis, and Future Exploration of Lake Vostok and Other Antarctic Subglacial PDF

38 Pages·2005·1.1 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Occurrence, Analysis, and Future Exploration of Lake Vostok and Other Antarctic Subglacial

18Mar2005 11:44 AR AR233-EA33-07.tex XMLPublishSM(2004/02/24) P1:JRX 10.1146/annurev.earth.33.092203.122725 Annu.Rev.EarthPlanet.Sci.2005.33:215–45 doi:10.1146/annurev.earth.33.092203.122725 Copyright(cid:1)c 2005byAnnualReviews.Allrightsreserved FirstpublishedonlineasaReviewinAdvanceonJanuary11,2005 LAKES BENEATH THE ICE SHEET: The Occurrence, Analysis, and Future Exploration of Lake Vostok and Other Antarctic Subglacial Lakes g s.or Martin J. Siegert w vie BristolGlaciologyCenter,SchoolofGeographicalSciences,UniversityofBristol, e alr BristolBS81SS,UnitedKingdom;email:[email protected] u n n a m arjournals.nal use only. bK■eenyAeabWtshtortrhadecsticeAAsinhrtebaeortcrsntioecfag,Aesonuptbahgryclastiiccciasa.lhTeanhsveibrleoaenrgnmeuestns,etsLd,aetkoxepiVldoeornsatttoiifokyn,misomreortehathna1n02050lakkems oo aded fror pers igneolethnegrtmhaalnhde1atkinmg,daenedp.gSeunbergaltaecdiamllealktwesatoecrccuorllbeecctsauinsetotphoegicraepbhaicsehiosllkoewpst.wFaorrmlabkye oF watertobeinequilibriumwiththeicesheet,itsroofmustslopetentimesmorethanthe wnl05. icesheetsurface.Thisslopecausesdifferentialtemperaturesandmelting/freezingrates Do18/ acrossthelakeceiling,whichexciteswatercirculation.Theexplorationofsubglacial 245. n 04/ lakes has two goals: to find and understand the life that may inhabit these unique 05.33:215-n Siegert o eTdnihrveeicrtteocnshtmundeoinleotssgoaicnfadslutdobegmvleaelcaoispaumlrleeankthtesesrcmelqiamuyiartteaedkrefeocsroeivrndessriatthluaymteoaecrascsuutorreihnmasepenpdtesinmm.eenatns,ohnolwakeeveflro,tohrast. ci. 20Marti net. SProf. 1.INTRODUCTIONANDBACKGROUND Plaby h. 1.1.ConditionsBeneaththeIceSheet art v. E TheconceptofliquidwaterbeneaththeicesheetsofAntarcticais,tothoseunfa- Re miliarwithglacialprocesses,somewhatincongruous.Thesurfaceairtemperatures u. incentralEastAntarcticaoftenreachbelow−60◦C,andthecoldestofficialtem- n An perature ever recorded on Earth, −89.2◦C (−128.6◦F), occurred at the Russian VostokStationonJuly21,1983.Yet,alittlelessthan4kmbelowtheicesurface atVostokStation,attheicesheetbase,ahugebodyofwaternamedLakeVostok exists.Thislakeisthelargest(byanorderofmagnitude)ofmorethan100known lakesthatlayundertheEastandWestAntarcticicesheets.Temperaturescanattain themeltingvaluebeneathanicesheetbecauseofthreefactors.First,thepressure beneathanicesheet(i.e.,theweightofice)causesareductioninthetemperatureat whichicemelts.Beneath4kmofice,thisvalueisapproximately−3◦C.Second, the ice sheet insulates the base from the ultra cold temperatures at the surface. Third,heatisgeneratedattheicesheetbasefromtheEarth(geothermalheat)and 0084-6597/05/0519-0215$20.00 215 18Mar2005 11:44 AR AR233-EA33-07.tex XMLPublishSM(2004/02/24) P1:JRX 216 SIEGERT g or s. w e vi e alr u n n a m arjournals.nal use only. oo oaded frFor pers wnl05. Do18/ 245. n 04/ Figure1 Icesheetthermalconditionsandthemaintenanceofwarmsub- 215-ert o glacialconditionsinEastAntarcticaowingtogeothermalheating. 05.33:n Sieg ci. 20Marti tFhoeriacnesicheeesthietseetl4f(kfrmicttihoinckh,etahteowheiantgrteoqtuhiereddeftoormmealttiobnaosafliciceeanisdabpapsraolxsilmidaintegl)y. net. SProf. 50 mW m−2, which is the background geothermal value (Figure 1). Thus, sub- Plaby glacialwater,andlakes,canoccurbeneaththecenterofalargeicesheetwithout h. theneedforunusualgeothermalconditions. art Water flow beneath an ice sheet is controlled by the water pressure gradient E v. (a combination of gravity and ice overburden). In simple terms, water may flow e u. R uphilliftheslopeoftheicesurfaceexceedsapproximately1/10oftheicesheet nn base.Inothercases,subglacialwaterflowsdownhill.Theproductionandflowof A waterattheicesheetbedleadtoitsaccumulationwithintopographichollowsand, hence,theformationofsubglaciallakes. 1.2.IdentificationofSubglacialLakes LakesbeneaththeAntarcticIceSheetwerefirstreportedfromairborneradio-echo sounding (RES) records in the late 1960s and early 1970s (Robin et al. 1970, Oswald&Robin1973).ThetechniqueofRESworksthroughtheissuingofVHF radio waves into the ice sheet, which reflect of boundaries of dielectric contrast (Figure2).Suchboundariesoccurattheicesurface,withintheicesheet(internal 18Mar2005 11:44 AR AR233-EA33-07.tex XMLPublishSM(2004/02/24) P1:JRX ANTARCTICSUBGLACIALLAKES 217 he1970s,mitteranderaircraftpearance. es.Inttranssmallflatap alreviews.org ndothersubglaciallakmountedwiththeradarmostradarsurveysuseuniformlystrongand Annu. Rev. Earth. Planet. Sci. 2005.33:215-245. Downloaded from arjournals.annuby Prof. Martin Siegert on 04/18/05. For personal use only. Thetechniqueofairborneradarsounding,anditsapplicationtoidentifyingLakeVostokaradarsurveyswereundertakenwithaC130Herculestransporteraircraft,withthewingsAircraftnavigationwasaccuratetoapproximately5kminthecenterofAntarctica.Today,tonavigate.Subglaciallakesareeasilyidentifiedonairborneradarrecordsowingtotheirperturbationsarerecordedashyperbolaeinradardata. e2neer.PSck rrvGo FiguairboreceiandBedr 18Mar2005 11:44 AR AR233-EA33-07.tex XMLPublishSM(2004/02/24) P1:JRX 218 SIEGERT layering),andfromtheicesheetbase.AirborneRESat60MHzisoftenusedto penetratetothebaseoficemorethan4kmthickinAntarctica(e.g.,Robinetal. 1977, Drewry 1983, Morse et al. 2002, Studinger et al. 2003a). This is possible because ice is relatively transparent to radio waves at this frequency (Johari & Charette1975),especiallywhenitisseveraltensofdegreesbelowfreezing,asis thecaseformostoftheAntarcticIceSheet.Thestrengthofreflectionfromthebed dependstoafirstorderonthedifferencebetweenthedielectricpropertiesoftheice (dielectricconstantε = 3.2)andthedielectricpropertiesofthesubicematerial. Asthedielectricconstantofwater(ε = 81)isverydifferentfromtypicalbedrock org (ε = 4to9),amuchstrongerreflectionisobtainedfromanice-waterinterface s. w comparedwithanice-rockinterface.Thisdifferenceisincreasedbytherelatively e vi rough character of an ice-bedrock interface, which scatters energy and further e alr reducesechostrength.ThismakesRESanidealtechniqueforidentifyingwater u n n bodiesbeneathicesheets.Subglaciallakesareidentifiedon60MHzRESrecords a om arjournals.onal use only. sbf1rty0ore–mtn2hg0etthhpderBaelisocseentnrgocsnhethgeoeeeftrtrtbtahhaceasknef,o,ialnwldodjhwiacicciaenhtnigvtaecpihcopaefer-aaabrncetdbienrrroitigescthrkiftcarscoeen(flFtehfiicgaltumitoriensrsev3;ce)(o:rbyr()dass)emcsaohtnroodotenhsagoroenrfettflcyhoepecnistcsicatoaalnlnlyest oaded frFor pers omfatxhiemRuEmSswloapveesletynpgitcha;lalyndap(cp)roaxvimeraytefllayt−an1d0vtiirmtueaslltyhehosurirzfoacnetasllcohpaer.acter,with wnl05. More than 100 lakes have now been identified beneath several regions of the Do18/ Antarctic Ice Sheet (Siegert et al. 1996, 2005; Tabacco et al. 2003; Popov & 245. n 04/ Masolov2004).LakesrangeinsizefromlessthanakilometerinlengthtoLake 05.33:215-n Siegert o V(Koastpoiktsa(theetable.s1t9k9n6o)w(nFiogfutrhee4l,akseees)c,owlohricihnsiesrtth).elargestbyanorderofmagnitude ci. 20Marti net. SProf. Figure3 60MHzRESdatafor11Antarcticsubglaciallakesandtheirsurroundi→ng Plaby icesheetbedtopography.(a)TwolakesintheDomeCarea(#33and#34).Themeanice arth. thicknessabovetheselakesis∼4000m.(b)LakeintheRidgeBarea(#46).Themean v. E icethicknessabovethelakeis∼3700m.(c)LakeatTitanDomeneartheSouthPole Re (#52).Themeanicethicknessabovethelakeis∼3070m.(d)LakeintheWhitmore nu. Mountains area (#68). The mean ice thickness above the lake is ∼2900 m. (e) Two n A lakesintheHerculesDomearea(#72and#73).Themeanicethicknessabovethese lakesis3200m(#72,right-handsideoftheimage)and2800m(#73,left-handside oftheimage).(f)LakeVostok,EastofRidgeB.Themeanthicknessatthispartof thelakeis∼4000m.(g)LakeatthemouthoftheAstrolabeSubglacialBasin(#30). Themeanicethicknessabovethislakeis4000m.(h)LakeattheheadoftheByrd Glacier(#61).Themeanicethicknessabovethislakeis2580m.(i)Lakebeneaththe centeroftheWestAntarcticIceSheet(#67).Themeanicethicknessabovethislake is3200m.(a)–(f)areadaptedfromDowdeswell&Siegert(2002),(g)–(i)arefrom Siegert(2002).Lakesarelocatedbyawhiteletter“L”ineachRESimage.Numbers ofsubglaciallakesareasdefinedinSiegertetal.(1996). 18Mar2005 11:44 AR AR233-EA33-07.tex XMLPublishSM(2004/02/24) P1:JRX ANTARCTICSUBGLACIALLAKES 219 g or s. w e vi e alr u n n a m arjournals.nal use only. oo oaded frFor pers wnl05. Do18/ 245. n 04/ 215-ert o 05.33:n Sieg ci. 20Marti net. SProf. Plaby h. art E v. e R u. n n A 18Mar2005 11:44 AR AR233-EA33-07.tex XMLPublishSM(2004/02/24) P1:JRX 220 SIEGERT 1.3.ScientificInterestinSubglacialLakes There has been a huge degree of scientific and media interest in Lake Vostok (and subglacial lakes in general) following the discovery that the water depth of the lake was several hundred meters (Kapitsa et al. 1996). Discussion about whethertomakeinsitumeasurementsofthelakehasbeendrivenbytwoscientific hypotheses.Thefirstisthatuniquemicroorganismsinhabitthelake.Thesecond isthatacompleterecordoficesheethistoryisavailablefromthesedimentsthat lie across the lake floor. Future exploration of subglacial lakes will be focused g on testing these hypotheses. If the hypotheses are correct, future investigations or s. of subglacial lakes could enable valuable insights into the history of Antarctica, w vie detailingitsresponsetoandcontrolonclimatechangeandourunderstandingof e alr biologicalfunctioningwithinextremeenvironments. u n n a m arjournals.nal use only. 22..1P.HLoYcSaItOioGnRsAofPSHuYbgOlaFciAalNLTaAkResCTICSUBGLACIALLAKES oo oaded frFor pers Ionccguernse.rTalhteerfimrsst,itshbereenaeraethtwthoepclaecnetesrboefntehaethictheeshAenetta,rwcthicerIeceicSehiesegtewnheerarellmytehltiicnkg- wnl05. estandtheicesheetiswarm-basedacrosslargeregions.Thesecondiscloserto Do18/ theicesheetmarginbeneathwarmed-based,enhancediceflowunits.Dowdeswell 245. n 04/ &Siegert(2002)identified10areasofAntarcticawheresubglaciallake-typere- 05.33:215-n Siegert o fl(Dienoccmtlouerd,siSnoogcucLtuhar:kPeDoVloemo,sHetoeCkrc)(,uwDlheosemrDeeomAmoer(,ewtthhheearnWe4oh0nitllmyakotwerseohMlaavokeuesnbtehaeainnvsei,dbteheneetniTfifreoadun)ns;adRn)i,tdaTgricettaiBnc ci. 20Marti Matothuentmainosut(hneoafrBthyerdAGstlraoclaiebre),SOuabtgeslaLciaanldB,aansidnG).eMorogreeVreLcaenndtly(,inTcalubdaicncgoaeltaakle. net. SProf. (2003)haveidentifiedafurther14lakesacrosstheDomeCregion,andPopov& Plaby Masolov(2004)havefoundevidenceof16lakesaroundtheDomeAandDome h. Fregions(Figure4). art E v. 2.2.LakeSurfaceAreas e R u. n Approximately75%oflakeshaveobservedlengthsoflessthan5km.OnlyLake n A Vostokislongerthan30km.LakeVostokismorethan250kmlongandasmuch as 80 km wide, making it unique in terms of surface area (Tabacco et al. 2002, Studinger et al. 2003a). Around Dome C, Siegert & Ridley (1998) found that a numberoflakesthoughttoberelativelysmalllaybeneathanoticeablylargeflat icesurface.AsisthecaseforLakeVostok,Siegert&Ridley(1998)hypothesized that the spatial extent of these flat surface features mark the actual extent of the lakesbeneath,whichmakesthesizeofthelakesmuchgreaterthanhadbeenfirst thought.NewRESdatafromDomeCconfirmsthatrelativelylargelakes(threeof whichare∼1000km3byarea)existbetweenDomeCandLakeVostok(Tabacco etal.2002,Tikkuetal.2002). 18Mar2005 11:44 AR AR233-EA33-07.tex XMLPublishSM(2004/02/24) P1:JRX ANTARCTICSUBGLACIALLAKES 221 2.3.LakeDepthsandWaterVolumes Only Lake Vostok has been sounded by seismic methods, which reveal a depth ofbetween510m(Kapitsaetal.1996)and∼1000m(Siegertetal.2001).Water depths for a number of other lakes have been inferred, however, from measure- mentsofthesurroundingbedrocktopography.Thesemeasurementssuggestthat thedepthsofmanylakesarebetweenapproximately50and250m(Dowdeswell &Siegert1999).Indeed,severallakesmaybemuchgreaterthanthis,judgingby theside-wallslopes.AccordingtoDowdeswell&Siegert(1999),morethan50% g ofthelakesarelikelytocontainlessthan5km3ofwater,andonly10%storemore or s. thanapproximately100km3.LakeVostok,bycontrast,isthoughttoholdapprox- w vie imately5000km3 ofwater(Studingeretal.2004).Thus,LakeVostokisunique e alr intermsofitsvolume,butthismayreflectthefactthatitislargebysurfacearea, u n ratherthanunusuallydeepcomparedwithothersubglaciallakesinAntarctica. n a m arjournals.nal use only. bnaotrRhthyeemcrenentbtryainsmsinpaesycetipinoavnroaoltvefedaetbwryoogardtaihvsicintryestdheaabtlalaoscwionlzsle:ocnateelad(rSogtveuedsroinLugathekreereVntoabslat.os2ikn0r0ae4nv)de.aalsstmhaatllietsr oo Downloaded fr18/05. For pers 2.4.SRalboEopSveedaoLtfaa,ktcheoeVmIobcsietno-ekWdhwaatistehraEnIRneSltee-v1rafstaiaoctenellcitheaanlgtiemfertormy,sohnoewetnhdatttohethiceeosthheeertosufrofanclye 245. n 04/ aapbpovroex,itmheatselloyp5e0omf.thFeoricteh-ewlaakteertoinbteerifnacheydmruossttabtiecaepqpuriolixbirmiuamtewlyitthenthteimiceess,haenedt 215-ert o inoppositedirectionto,theicesurfaceslope(Figure5).Thus,theicethicknessof ci. 2005.33:Martin Sieg tTlhahkeeensor.erltahteironnsehnidpobfeLtwakeeenVoicsteokanisdalpapkreoxsuimrfaatceelys5lo0p0ems igsretrauteerftohranalilnstuhbegsloauctihal. net. SProf. Plaby 2.5.TypesofSubglacialLakes h. art Dowdeswell&Siegert(2002)characterizedsubglaciallakesintothreemaintypes E v. asfollows:(a)lakesinsubglacialbasinsintheice-sheetinterior,(b)lakesperched e R ontheflanksofsubglacialmountains,and(c)lakesclosetotheonsetofenhanced u. n iceflow. n A The majority of Antarctic subglacial lakes are located within 200 km of ice dividesintheinterioroftheicesheet(Figure4).Thebedrocktopographyofthe ice sheet interior involves large subglacial basins separated by mountain ranges (Drewry1983).Thelakesinthiscategoryarethosefoundin,andonthemargins of,subglacialbasins.Theselakescanbedividedintotwosubgroups.First,there arethoselocatedwheresubglacialtopographyisrelativelysubdued,oftentoward thecenterofsubglacialbasins(e.g.,Figures3a,i).Secondly,somelakesoccurin significanttopographicdepressions,oftenclosertosubglacialbasinmargins,but stillneartheslow-flowingcenteroftheAntarcticIceSheet.Wherebedtopography isverysubdued,deepsubglaciallakesareunlikelytodevelop. 18Mar2005 11:44 AR AR233-EA33-07.tex XMLPublishSM(2004/02/24) P1:JRX 222 SIEGERT g or s. w e vi e alr u n n a m arjournals.nal use only. oo oaded frFor pers wnl05. Do18/ 245. n 04/ 215-ert o 05.33:n Sieg ci. 20Marti net. SProf. Plaby h. art E v. e R u. n n A 18Mar2005 11:44 AR AR233-EA33-07.tex XMLPublishSM(2004/02/24) P1:JRX ANTARCTICSUBGLACIALLAKES 223 Perchedsubglaciallakesarefoundmainlyintheinterioroftheicesheet,onthe flanksofsubglacialmountainranges(Figure3d).Inseveralcases,small(<10km long) subglacial lakes have been observed perched on the stoss face of large (>300mhigh),steep(gradient>0.1)subglacialhills. At least 16 subglacial lakes occur at locations close to the onset of enhanced ice flow hundreds of kilometers from the ice sheet crest (Siegert & Bamber 2000). An example is provided by three subglacial lakes near the onset of fast flow into Byrd Glacier (e.g., Figure 3h). Byrd Glacier is fast flowing and drains a very large interior ice sheet drainage basin into the Ross Ice Shelf (Drewry g or 1983). These subglacial lakes are similar in size and depth to the small and s. w probablyshallowlakesfoundinpartsofmajorsubglacialbasinsintheicesheet e vi interior. e alr u n n a 2.6.TectonicSettingofLakeVostok m arjournals.nal use only. ILgneaokrpeechVeynostisctyaoelka.sruSsr,tvuaedycinoognfecrethretetedalal.ekfe(f2oa0rn0td3haai)tsssbuleomecnmaleamr(iazFdeiegduttorheem6raaeps,utshleteessfcriozolemoraaninndseeexxrttte)e.nnsTtihvoeef oo oaded frFor pers raemsuinltasticoonnofifrmEeRdS-t1hesaateerlilaitleeaxltteimnteotrfyt(hReidlalkeye,eetsatal.bl1i9sh9e3d, Kpraepviitosauseltyaflr.o1m99e6x)-. wnl05. A major new finding of this survey was that the western half of the lake has Do18/ distinct gravity and magnetic anomaly compared to the eastern half. The border 245. n 04/ betweenthetwoanomaliesisclearandlinearalongtheeasternmarginofthelake 215-ert o (Figure6b). 05.33:n Sieg ← ci. 20Marti Figure5 ThedimensionsandtopographicsettingofLakeVostok.(a)ERS-1altime- net. SProf. tVroysotofkthceanAbnetairdcetinctiIficeedSfhroemettbheetwaneoenmaRliodugseflBataincdesDuorfmaceeCre.gTiohne.lSocPaRtiIo(nScooftLtPakoe- h. Plaby larResearchInstitute,UniversityofCambridge)radarflightlinesandthelocationof art all known subglacial lakes around Lake Vostok (denoted as black squares) are pro- E v. vided.Thesurfaceicesheetelevation,derivedfromtheERS-1altimeter,isalsoshown. e R Thecontourintervalis10m.Arrowsdenotethedirectionofsurfaceflowoficeover u. n LakeVostokcalculatedfromInSAR(InterferometricSyntheticApertureRadar)(Kwok n A etal.2000).Itmustbenotedthatrecentanalysisofflowstructureswithintheicesheet suggeststheInSARdatamaybeinaccurateacrossthesouthofLakeVostok(Tikku etal.2004).(b)Cross-sectionfromnorthtosouthalongthe200kmlengthofthelake. (c)Cross-sectionfromWesttoEastalongthe50kmwidthofthelake.Thedepthof LakeVostokcanbeestimatedby(1)seismicinformation,whichhasrevealedawater depthof>500mbeneathVostokStation;(2)side-wallbedrockgradientadjacentto thelakeof0.1,whichindicatesseveralhundredmetersofwaterdepthinthecenterof thelake;(3)radio-wavereflectionsfromthelakefloor,showingthewaterdepthtobe between10and20minthenorthofthelake;and(4)bedrockislandsmeasuredby radar. 18Mar2005 11:44 AR AR233-EA33-07.tex XMLPublishSM(2004/02/24) P1:JRX 224 SIEGERT Studinger et al. (2003b) analyzed aerogeophysical and seismological data to establisha“conceptualtectonicmodel”forLakeVostokanditslocale.Theycon- cludedthatthetectonicframeworkaroundLakeVostokinvolvesacrustalboundary (thesourceofthelinearmagneticanomaly).Thecauseofthisboundaryislikely tobeassociatedwiththeemplacementofathrustsheetontoapreviouslypassive continentalmargin.TheageofthethrustinghasbeenestimatedasProterozoic(i.e., Precambrian,inexcessof600millionyears).Subsequentnormalreactivationof thethrustsheetthenmayhavecreatedthetroughinwhichLakeVostokislocated (Studinger et al. 2003b). What remains unknown about Lake Vostok’s trough is g or theextenttowhichsubglacialerosionduringtheonsetofglaciationcontributed s. w toitsdevelopment. e vi e alr u n n a 3.ORIGINANDAGEOFLAKEVOSTOK m arjournals.nal use only. ManuocrhdearttoefntmioangnhiatsudbeeelnarggievretnhatonLanaykeotVhoesrtosukbagslaacpiaolslsaikbele,LhaabkietaVtofsotrolkifhea.sBbeeineng oaded froFor perso vetieawl.e2d0b0y3)m. anyastheultimatelong-termtargetforexploratoryresearch(Priscu wnl05. Do18/ 3.1.OriginandAgeoftheLake 245. n 04/ TheageandoriginofLakeVostokwillbecriticaltothebiotawithinthelake,and 215-ert o totheageandqualityofthegeologicalrecordsonthelakefloor.Onepublished 05.33:n Sieg tthheisotrhyecooryn,ctehrenilnakgethiseaosrsiugmineodftoLahkaveeVeoxsitsotkediswuinthliikneiltyst(rDouugxhbuprryioerttaolg.l2a0c0ia1t)i.oInn, ci. 20Marti andremainintactastheicesheetgrewacrossthelaketoitscurrentrelativelystable net. SProf. cboyngfirgouurnadtieodni.cIendfuarcitn,gthiceeresghieoentbthuailtdiuspn,oewveLnaikfethVeotsrotoukghwaansdplraokbeabwlyeroecpcruepseiendt h. Plaby prior to glaciation. This is because the margin of the ice sheet would have been art far closer to the position of the lake during the early stages of ice growth (e.g., E v. DeConto&Pollard2003).Thesurfaceslopesoftheicesheetovertheregionof e R Lake Vostok would, therefore, have been significantly greater than those at the u. n center of today’s ice sheet. In this situation, water would have been driven out n A ofthetroughtotheicesheetmargin.AprobableanalogytoLakeVostokduring icesheetbuildupistheAstrolabeSubglacialTroughinWilkesLand,whichholds thethickesticeinAntarctica(4776m).Thistroughhasasmallsubglaciallakeat itsmouth,whichindicatesthatthewholetroughissubjecttosubglacialmelting, and that water is driven out of the deepest parts of the trough. As the Astrolabe SubglacialTroughisunabletoholdalargelakeowingtotheiceoverburden,Lake Vostok would not have been resident in its trough during the early stages of ice sheetgrowthinAntarctica.Thus,thelakeismostlikelytopostdatetheformation of the current ice sheet. The exact age of the East Antarctic Ice Sheet has been stronglydebatedoverthepastfewdecades.Somebelievethatithasremainedin

Description:
across the lake ceiling, which excites water circulation. The exploration of subglacial lakes has two goals: to find and understand the life that may
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.