ebook img

The multidegree of the multi-image variety PDF

0.25 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The multidegree of the multi-image variety

The multidegree of the multi-image variety LauraEscobarandAllenKnutson 7 1 0 2 n a J AbstractThemulti-imagevarietyisasubvarietyofGr(1,P3)n thatmodelstaking 3 1 pictureswithnrationalcameras.Wecomputeitscohomologyclassinthecohomol- ogyofGr(1,P3)n,andfromthereitsmultidegreeasasubvarietyof(P5)nunderthe ] Plu¨ckerembedding. G A . h 1 Introduction t a m Multi-viewgeometrystudiestheconstraintsimposedonathree-dimensionalscene [ from various two-dimensional images of the scene. Each image is produced by a 1 camera. Algebraic vision is a recent field of mathematics in which the techniques v ofalgebraicgeometryandoptimizationareusedtoformulateandsolveproblemsin 2 computervision.Oneofthemainobjectsstudiedbythisfieldisamulti-viewvariety. 5 Roughly speaking, a multi-view variety parametrizes all the possible images that 8 3 can be taken by a fixed collection of cameras. See [1, 11, 14] for more details on 0 multi-viewvarieties.See[13]forasurveyonvariouscameramodels. . Thework[11]presentsanewpointofviewtostudythemulti-viewvarieties.A 1 0 photographiccameramapsapointinthescenetoapointintheimage.[11]defines 7 ageometriccamera,whichmapsapointinthescenenottoapoint,buttoaviewing 1 ray.Moreprecisely,aphotographiccameraisamapP3(cid:57)(cid:57)(cid:75)P2 orP3(cid:57)(cid:57)(cid:75)P1×P1, v: whereasageometriccameraisamapP3(cid:57)(cid:57)(cid:75)Gr(1,P3)suchthattheimageofeach i pointisalinecontainingthepoint.Theviewingraycorrespondingtoapoint p∈P3 X is the line in Gr(1,P3) this point gets mapped to. An important assumption is that r a LauraEscobar UniversityofIllinoisatUrbana-Champaign,DepartmentofMathematics,Urbana,IL,61801,USA e-mail:[email protected] AllenKnutson CornellUniversity,DepartmentofMathematics,Ithaca,NY,14850,USA, e-mail:[email protected] 1 2 LauraEscobarandAllenKnutson lighttravelsalongrayswhichmeansthattheimageofageometriccameraistwo- dimensional. We now illustrate these definitions using the example of pinhole cameras or cameræ obscuræ, see Figure 1. As a geometric camera, a pinhole camera maps a point p∈P3 tothelineφ(p)connecting ptothefocalpoint.Thismapisrational since it is undefined at the focal point. As a photographic camera, a pinhole cam- era maps a point p∈P3 to the intersection of φ(p) and the plane at the back of thecamera.Noticethat,asaphotographiccamera,therearemanypinholecameras corresponding to a given focal point. All of these cameras are equivalent up to a projectivetransformation.Theessentialpartofapinholecameraisthemappingof thescenepointstoviewingrays,i.e.itsmodelingasageometriccamera. p φ(p) focalpoint Fig.1 Apinholecamera. Amulti-imagevarietyistheZariskiclosureoftheimageofamap φ :P3(cid:57)(cid:57)(cid:75)Gr(1,P3)n p(cid:55)→(φ (p),...,φ (p)), 1 n whereeachφ isageometriccamera.Themulti-viewvarietyisamulti-imagevariety i suchthateachφ isapinholecamera.LetC betheclosureoftheimageofφ inside i i i thei-thGr(1,P3).Thenundersomeassumptions,[11,Theorem5.1]showsthat (C ×···×C )∩V =φ(P3), 1 n n whereV istheconcurrentlinesvarietyconsistingoforderedn-tuplesoflinesinP3 n thatmeetinapointx.Theconcurrentlinesandmulti-imagevarietiesareembedded into(P5)nusingthePlu¨ckerembedding. Themultidegreeofavarietyembeddedintoaproductofprojectivespacesisthe polynomialwhosecoefficientsgivethenumbers(whenfinite)ofintersectionpoints Themultidegreeofthemulti-imagevariety 3 in the variety intersected with a product of general linear subspaces. The present paper verifies the conjectured formula [11, Equation (11)] for the multidegree of V andcomputesthemultidegreeofthemulti-imagevariety.Todoso,wedescribe n V usingaprojectionofapartialflagvarietyanduseSchubertcalculustocompute n the cohomology classes ofV and (C ×···×C )∩V in the cohomology ring of n 1 n n Gr(1,P3)n. We then push forward these formulæ into (P5)n to obtain the multide- grees. We now describe the organization of this paper. In §2 we define the main ob- jectsofstudy:themulti-imagevarietyandtheconcurrentlinesvariety.Wepresent themaintheoremwhichcomputesthemultidegreesoftheseobjects.Themaintool toprovethemaintheoremisSchubertcalculus.In§3wegiveabriefintroduction toSchubertcalculusforGr(1,P3).In§4wecomputethecohomologyclassofthe multi-imagevarietyandtheconcurrentlinesvarietyintermsoftheSchubertcycles inGr(1,P3).Weprovethemaintheorembytakingthepushforwardoftheseequa- tionstothecohomologyringofP5.In§5werefinetheseresultstoacomputationof theK-classfortheconcurrentlinesvariety. 2 Themulti-imagevariety TheGrassmannianGr(k,Pd)consistsofk-dimensionalplanesinsidePd.Acongru- ence is a two-dimensional family of lines in P3, i.e. a surfaceC in Gr(1,P3). The bidegree (α,β) of a congruenceC is a pair of nonnegative integers such that the cohomologyclassofCinGr(1,P3)hastheform [C]=α[L: Lcontainsafixedpoint]+β[L: Lliesinafixedplane]. (1) Thefirstintegerα iscalledtheorderandcountsthenumberoflinesinCthatpass through a general point of P3, and β is called the class and counts the number of linesinCthatlieinageneralplaneofP3.ThefocallocusofCconsistsofthepoints inP3thatdonotbelongtoα distinctlinesofC. Example2.1.A congruence with bidegree (1,0) consists of all lines in Gr(1,P3) that contain a fixed point. A geometric camera for such a congruence represents a pinholecamerawherethefixedpointisthefocalpoint. Example2.2.A two-slit camera assigns to p∈P3 the unique line passing through pandintersectingtwofixedlinesL ,L ∈Gr(1,P3),seeFigure2.Itsfocallocusis 1 2 {L ,L }.Thesecamerascorrespondtothecongruenceswithbidegrees(1,1). 1 2 The study of congruences started with [7] which classified those of order one. Theywerestudiedbymanymathematiciansduringthesecondhalfofthe19thcen- tury;seethebook[5]forsomeoftheseresults. Remark2.3.Congruencesarestudiedthearticle[6].Inparticular,[6,§2]discusses congruencesandtheirbidegrees.ThebidegreesofcurvesinP1×P1 arediscussed inthearticle[10]. 4 LauraEscobarandAllenKnutson φ(p) * L1 * L 2 p Fig.2 Atwo-slitcamera. Considerarationalmap φ :P3(cid:57)(cid:57)(cid:75)C ×···×C ⊂ Gr(1,P3)n 1 n x(cid:55)→(φ (x),...,φ (x)) 1 n wheretheclosureorφ(P3)equalsC,eachC isacongruenceandx∈φ(x)foralli. i i i i Eachmapφ isdefinedeverywhereexceptonthefocallocusofC.Inthelanguage i i ofalgebraicvisionsuchamapmeanstakingpictureswithnrationalcameraswhere eachC isthei-thimageplane.Animportantassumptionisthatlighttravelsalong i rayswhichmeansthatC is2-dimensional. i LetC ,...,C be congruences of bidegree (1,β). Note that φ(x) is the unique 1 n i i lineinC passingthrough x.The multi-imagevariety of (C ,...,C )istheZariski i 1 n closure of φ(P3). The concurrent lines variety V consists of ordered n-tuples of n lines in P3 that meet in a point x. By [11, Theorem 5.1], if the focal loci of the congruencesarepairwisedisjointthenthemulti-imageequalstheintersection (C ×···×C )∩V ⊂ Gr(1,P3)n. 1 n n Mostofthecamerasstudiedincomputervisionareassociatedwithcongruences of order 1. However, cameras of higher order also appear in computer vision, see [13] and [11, §7]. As an example of a camera associated to a congruence of bide- gree(2,2)letusdiscussanon-centralpanoramiccamera,seeFigure3.Considera circleX obtainedbyrotatingapointaboutaverticalaxisL.Therearetwolinesin Gr(1,P3)passingthroughageneralpointp∈P3andintersectingbothLandX.The congruenceCconsistingofalllinesintersectingbothX andLhasbidegree(2,2).A physicalrealizationofanon-centralpanoramiccameraconsistsofasensoronthe circletakingmeasurementspointingoutwards.Thisorientationofthesensoryields amapφ :P3(cid:57)(cid:57)(cid:75)Gr(1,P3),i.e.itassignsonlyonelineφ(p)toapoint p∈P3. The concurrent lines and multi-image varieties are embedded into (P5)n using thePu¨ckerembedding Gr(1,P3)(cid:44)→P5. ThemultidegreeofavarietyX embeddedintoaproductofprojectivespacesPa1× ···×Pan is a homogeneous polynomial whose term qzr1···zrn indicates that there 1 n Themultidegreeofthemulti-imagevariety 5 φ(p) L p * * * X * Fig.3 Anon-centralpanoramiccamerapicksoneofthetwolinesintersectingthecircleXandthe lineL. are q intersection points when X is intersected with the product H ×···×H ⊂ 1 n Pa1×···×Pan ofgenerallinearsubspaces,wheredim(Hi)=ri.Thedegreeofthis polynomialequalsthecodimensionofX inPa1×···×Pan.Anequivalentdefinition ofthemultidegreeofXisitscohomologyclassinthecohomologyringofPa1×···× Pan.Thebuilt-incommandmultidegreeinthesoftwareMacaulay2[4]computesthe multidegree of X from its defining ideal. We refer to the book [9, §8.5] for more detailsonmultidegrees. The main theorem of this paper computes the multidegree of the multi-image variety: Theorem2.4.ThemultidegreeoftheconcurrentlinesvarietyV in(P5)nequals n   (z z ···z )34∑z−2z−1+8 ∑ z−1z−1z−1. (2) 1 2 n  i j i j k  (i,j) {i,j,k} i(cid:54)=j Let(α,β)bethebidegreeofC fori=1,...,n.Themultidegreeof(C ×···×C )∩ i i i 1 n V in(P5)nequals n (cid:32) (α +β)(α +β ) (α α ···α )(z z ···z )5 ∑ i i j j z−2z−1+ 1 2 n 1 2 n αα i j (i,j) i j i(cid:54)=j (cid:33) (α +β)(α +β )(α +β ) ∑ i i j j k k z−1z−1z−1 , αα α i j k {i,j,k} i j k wherewedistributeaccordinglywheneverα =0. i 6 LauraEscobarandAllenKnutson Inparticular,themultidegreeofthemulti-imagevarietyof(C ,...,C )wherethe 1 n bidegreeofC is(1,β)equals i i (cid:32) (z z ···z )5 ∑(1+β)(1+β )z−2z−1+ 1 2 n i j i j (i,j) i(cid:54)=j (cid:33) ∑ (1+β)(1+β )(1+β )z−1z−1z−1 . i j k i j k {i,j,k} Remark2.5.Ponce-Sturmfels-Trager [11, equation (11)] had conjectured Formula 2forthemultidegreeofV ,basedonexperimentalevidencefromMacaulay2. n Remark2.6.Aholt-Sturmfels-Thomas [1, Corollary 3.5] gives an equation for the multidegree of the multi-image variety for the congruences with bidegree (1,0). ThisequationcoincideswiththeequationofTheorem2.4. Toprovethistheorem,wefirstuseSchubertcalculustoobtainthecohomology classesofV andthemulti-imagevarietyinthecohomologyringofGr(1,P3)n;see n Theorems4.2and4.5.Usingthisformulawethendescribethemultidegreesofthese varietiesandproveTheorem2.4.Inthenextsectionweintroduceournotationfor SchubertvarietiesandreviewthepartofSchubertcalculusthatweneed. 3 Schubertvarieties In this section we review Schubert varieties in Gr(k,Pd) keeping Gr(1,P3) as the main example. For further details we recommend the book [3]. Fix a coordinate systemforPd.LetP(i,i+1,...,j) denotethecoordinatesubspaceofPn spannedbythe coordinates(i,i+1,...,j)andconsiderthestandardflag E :=P(0)⊂P(0,1)⊂···⊂P(0,1,...,d)=Pd. • The Schubert variety in Gr(k,Pd) corresponding to the subset {j ,...,j } ⊂ 1 k+1 {1,2,...,d+1}is (cid:110) (cid:111) X := p∈Gr(k,Pd):dim(p∩P(0,1,...,jl−1))≥l−1forl=1,...,k+1 . {j1,...,jk+1} (3) Example3.1.The(cid:0)d+1(cid:1)=(cid:0)4(cid:1)SchubertvarietiesinGr(1,P3)are k+1 2 X ={P(0,1)}, {1,2} X ={L∈Gr(1,P3):P(0)⊂L⊂P(0,1,2)}, {1,3} X ={L∈Gr(1,P3):P(0)⊂L}, {1,4} Themultidegreeofthemulti-imagevariety 7 X ={L∈Gr(1,P3):L⊂P(0,1,2)}, {2,3} X ={L∈Gr(1,P3):dim(L∩P(0,1))≥1}, and {2,4} X =Gr(1,P3). {3,4} ConsidertheSchubertcellsdefinedbyreplacing≥by=inEquation(3).Since Gr(1,P3) is a disjoint union of the Schubert cells, and they are each contractible, the classes [X ] for J ⊂{1,2,...,d+1} form a basis for the cohomology ring of J Gr(k,Pd).Theringoperationisthecupproduct [X ](cid:96)[X ]:=[X (Eop)∩X ], I J I • J where XI(Eo•p) is defined by using P(d−jl+1,d−jl+2,...,d) instead of P(0,1,...,jl−1) in Equation3.(UnlikeX ,thisvarietyintersectsX transversely,whilehavingthesame I J cohomologyclassasX .)Onealsogetsabasisforthecohomologyringofproducts I ofGrassmanniansviatheKu¨nnethisomorphism. Example3.2.Notethat[X ](cid:96)[X ]=0foranyJ(cid:54)={3,4}sinceP(2,3)∈/X .Any J {1,2} J lineLcontainingP(0)isnotcontainedinP(1,2,3)andtherefore[X ](cid:96)[X ]=0. {1,4} {2,3} Wehavethat[X ](cid:96)[X ]=[X ]sincethereisauniquelinecontainingthe {1,4} {1,4} {1,2} pointsP(0)andP(3).OngeneralGrassmannians,computing[X ](cid:96)[X ]canbedone I J using the “Pieri rule” for special classes, see Equation (4), and the “Littlewood- Richardsonrule”[8]forarbitrarydimensions. SchubertvarietiesstratifyGr(k,Pd).Theposetoftheirinclusionsismosteasily describedwhenSchubertvarietiesareindexedusingpartitions.Apartitionofninto k+1partsisalistλ =(λ1≥λ2≥···≥λk+1>0)suchthatn=∑iλi.Thereisa bijectionbetween(k+1)-subsetsof[d+1]andpartitionsλ withatmostk+1parts suchthatλ ≤d−kwhichisgivenby 1 j={j ,...,j } ↔ λ =(d−k+1−j , d−k+2−j ,..., d−j ,d+1−j ). 1 k+1 1 2 k k+1 Partitionscanbevisualizedinthefollowingway.Givenλ ≥λ ≥...≥λ ,we 1 2 k+1 drawafiguremadeupofsquaressharingedgesthathasλ squaresinthefirstrow, 1 λ squaresinthesecondrowstartingoutrightbelowthebeginningofthefirstrow, 2 andsoon.ThisfigureiscalledaYoungdiagram.SeeFigure4foranexample.We saythatλ ⊂λ(cid:48)ifλ ≤λ(cid:48)foralli,i.e.ifthediagramofλ liesinsidetheoneforλ(cid:48). i i Fig.4 TheYoungdiagramofthepartitionλ=(5,3,3,2) FromnowonwewillindexSchubertcellsandvarietiesbypartitions.Withthis indexingsetwehavethefollowingfacts: 8 LauraEscobarandAllenKnutson • dim(Xλ)=(k+1)(d−k)−∑iλi, • X ⊃X iffµ ⊃λ,and λ µ • ThePierirule:supposethatλ =(λ ,0,...,0)andµ =(µ ,µ ,...,µ )isany 1 1 2 k+1 partition.Then [X ](cid:96)[X ]=∑[X ], (4) λ µ ν wherethesumisoverallpartitionsν =(ν ,ν ,...,ν )suchthatν ≤d−k, 1 2 k+1 1 µi≤νi≤µi−1,and∑νi=∑(λi+µi). Example3.3.TheSchubertvarietiesinGr(1,P3)areorderedbycontainmentinthe posetinFigure5.ThisposetisrankedbythedimensionsoftheSchubertvarieties. X∅=Gr(1,P3) X ={L : L∩P(0,1)(cid:54)=∅} 1 X1,1={L : L⊂P(0,1,2)} X2={L : P(0)⊂L} X2,1={L : P(0)⊂L⊂P(0,1,2)} X2,2={L=P(0,1)}. Fig.5 ThecontainmentposetoftheSchubertvarietiesinGr(1,P3). BythePierirule,wehavethat[X ](cid:96)[X ]=[X ]and[X ](cid:96)[X ]=[X ]. 1 2 2,1 1 1,1 2,1 Remark3.4.WecanrewriteEquation1forthecohomologyclassofacongruence as [C]=α[X ]+β[X ]. 2 1,1 Remark3.5.In the article [6, §6], Schubert varieties and the intersection theory of Gr(1,P3)arealsodiscussed. 4 Computingthemultidegrees LetM⊂Gr(0,P3)×Gr(1,P3)bethepartialflagmanifoldconsistingofpairs(P,L) wherePisapointinP3 andLisalinethroughP.Suchapairiscalleda(partial) Themultidegreeofthemulti-imagevariety 9 flaginP3.DefineMn tobethesubvarietyofMn consistingoflistsofnflagssuch ∆ thatthepointPisthesameinallofthem.Considerthediagonal (P3)n :={(P,...,P):P =···=P}; (5) ∆ 1 n 1 n thenMn isthepreimageof(P3)n undertheprojectionMn→(P3)ninducedby ∆ ∆ M−→P3, (P,L)(cid:55)−→P. Forexample,M2 ⊆M2 consistsofpairsofflagsoftheform((P,L ),(P,L )).The ∆ 1 2 followingisstraightforward: Proposition4.1.TheconcurrentlinesvarietyV istheimageofMn underthepro- n ∆ jectionMn−→p Gr(1,P3)ninducedby M(cid:44)→Gr(0,P3)×Gr(1,P3)−→Gr(1,P3). Theintersection(cid:0)Mi−1×M2×Mn−i−1(cid:1)∩(cid:0)Mi×M2×Mn−i−2(cid:1)consistsofthelists ∆ ∆ of flags ((P,L ),...,(P,L )) such that P =P =P , and this intersection is 1 1 n n i i+1 i+2 transverse.WecanwriteMn asthetransverseintersection ∆ n−1 Mn = (cid:92)(cid:0)Mi−1×M2×Mn−i−1(cid:1). (6) ∆ ∆ i=1 FromthisdescriptionwededucethefollowingTheoremswhichgivethecohomol- ogyclassesofV andthemulti-imagevariety. n Theorem4.2.Theclass[V ]oftheconcurrentlinesvarietyinthecohomologyring n ofGr(1,P3)nis [Vn]= ∑ (cid:79)n−1(cid:104)L:L∩P(vi,vi+1,...,vi+1)(cid:54)=∅(cid:105). (7) 0=v0≤v1≤...≤vn=3 i=0 vj+1−vj<3 Moreover,[V ]canbewrittenas n  [X ] ifv −v =0 n  2 i i−1 (cid:79) [Vn]= ∑ [X1] ifvi−vi−1=1. (8) 0=v0≤v1≤...≤vn=3 i=1[Gr(1,P3)] ifv −v =2 vj+1−vj<3 i i−1 Remark4.3.Equation(7)ismorenaturalthanEquation(8),inthat(7)iscorrectin T-equivariantcohomology,whereas(8)isonlycorrectinordinarycohomology. 10 LauraEscobarandAllenKnutson Example4.4.Considern=3.InT-equivariantcohomologywehavethat (cid:104) (cid:105) (cid:104) (cid:105) (cid:104) (cid:105) [V ]= L:L∩P(0)(cid:54)=∅ ⊗ L:L∩P(0,1)(cid:54)=∅ ⊗ L:L∩P(1,2,3)(cid:54)=∅ + n (cid:104) (cid:105) (cid:104) (cid:105) (cid:104) (cid:105) L:L∩P(0)(cid:54)=∅ ⊗ L:L∩P(0,1,2)(cid:54)=∅ ⊗ L:L∩P(2,3)(cid:54)=∅ + (cid:104) (cid:105) (cid:104) (cid:105) (cid:104) (cid:105) L:L∩P(0,1)(cid:54)=∅ ⊗ L:L∩P(1)(cid:54)=∅ ⊗ L:L∩P(1,2,3)(cid:54)=∅ + (4otherterms). Inordinarycohomologywehavethat [V ]=[X ]⊗[X ]⊗[Gr(1,P3)] + [X ]⊗[Gr(1,P3)]⊗[X ]+ n 2 1 2 1 [X ]⊗[X ]⊗[Gr(1,P3)] + [X ]⊗[X ]⊗[X ] + [X ]⊗[Gr(1,P3)]⊗[X ]+ 1 2 1 1 1 1 2 [Gr(1,P3)]⊗[X ]⊗[X ] + [Gr(1,P3)]⊗[X ]⊗[X ]. 2 1 1 2 Proof. Fromequation(6)wehavethat n−1 [Mn]=∏(cid:0)1⊗···⊗1⊗[M2]⊗1⊗···⊗1(cid:1) ∆ ∆ i=1 inthecohomologyof(Gr(0,P3)×Gr(1,P3))n.IdentifyingH∗((P3)2)∼=H∗(P3)⊗ H∗(P3)usingtheKu¨nnethisomorphism,wehave (cid:2)(P3)2(cid:3)= ∑ (cid:104)P(0,1,...v)(cid:105)⊗(cid:104)P(v,v+1,...3)(cid:105) ∆ 0≤v≤3 andhence (cid:2)(P3)n(cid:3)= ∑ (cid:104)P(v0,...,v1)(cid:105)⊗···⊗(cid:104)P(vn−1,...,vn)(cid:105). ∆ 0=v0≤v1≤...≤vn=3 PullingthisbacktoMn,wegetessentiallythesameformula (cid:104) (cid:105) (cid:104) (cid:105) [Mn]= ∑ (P,L):P∈P(v0,...,v1) ⊗···⊗ (P,L):P∈P(vn−1,...,vn) . ∆ 0=v0≤v1≤...≤vn=3 PushingforwardthisclassundertheprojectionmapMn−→p Gr(1,P3)n,weget p [Mn]=[V ]. Not all terms of the [Mn] formula above survive when we project ∗ ∆ n ∆ Mn toGr(1,P3)nbyforgettingP: ∆ • The image of {(P,L) : P ∈ P(0,1,2,3)} under p equals Gr(1,P3). Since for v −v =3thedimensionof{(P,L): P∈P(0,1,2,3)}dropsunderp,anyfactor i i−1 (cid:104) (cid:105) (P,L): P∈P(0,1,2,3) pushesdownto0. (cid:104) (cid:105) (cid:104) (cid:105) • Theotherterms (P,L): P∈P(i,i+1,...,j) pushdownto L: L∩P(i,i+1,...,j)(cid:54)=∅ .

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.