ebook img

The Modelling and Analysis of the Mechanics of Ropes PDF

128 Pages·2014·4.076 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Modelling and Analysis of the Mechanics of Ropes

Solid Mechanics and Its Applications C. M. Leech The Modelling and Analysis of the Mechanics of Ropes Solid Mechanics and Its Applications Volume 209 Series Editor G. M. L. Gladwell, Waterloo, Canada For furthervolumes: http://www.springer.com/series/6557 Aims and Scope of the Series Thefundamentalquestionsarisinginmechanicsare:Why?How?andHowmuch? The aim of this series is to provide lucid accounts written by authoritative researchersgivingvisionandinsightinansweringthesequestionsonthesubjectof mechanics as it relates to solids. The scope of the series covers the entire spectrum of solid mechanics. Thus it includes the foundation of mechanics; variational formulations; computational mechanics;statics,kinematicsanddynamicsofrigidandelasticbodies:vibrations of solids and structures; dynamical systems and chaos; the theories of elasticity, plasticity and viscoelasticity; composite materials; rods, beams, shells and mem- branes; structural control and stability; soils, rocks and geomechanics; fracture; tribology; experimental mechanics; biomechanics and machine design. The median level of presentation is the first year graduate student. Some texts aremonographsdefiningthecurrentstateofthefield;othersareaccessibletofinal year undergraduates; but essentially the emphasis is on readability and clarity. C. M. Leech The Modelling and Analysis of the Mechanics of Ropes 123 C. M.Leech Windsor House Congleton, Cheshire UK ISSN 0925-0042 ISSN 2214-7764 (electronic) ISBN 978-94-007-7840-5 ISBN 978-94-007-7841-2 (eBook) DOI 10.1007/978-94-007-7841-2 SpringerDordrechtHeidelbergNewYorkLondon LibraryofCongressControlNumber:2013953245 (cid:2)SpringerScience+BusinessMediaDordrecht2014 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purposeofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthe work. Duplication of this publication or parts thereof is permitted only under the provisions of theCopyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the CopyrightClearanceCenter.ViolationsareliabletoprosecutionundertherespectiveCopyrightLaw. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) To my wife, Brenda and to my daughters, Andrea, Helen, Nicola and Suzanne Preface Linear fibre structures, typified by the many configurations of ropes, cables, stays and the smaller components, yarns and strands, have been the subject of analysis over many years.This isanattempt toformalise the subjectandtoemphasisethe exploitation of these developments in the various engineering industries. Aswellasconsideringtheconventionaltheoriesoftwistedassemblyextension, thetheoriesofloadingofbraidedandplaitedstructures,bending,inter-component friction and component dilation and distortion are introduced. Also introduced is the modelling of wear or abrasion and of component heating. Various modelling techniques have also evolved, typically the finite element theories and their associated finite element codes. These have been developed so that they form the regular tool in engineering offices, through their application to design and engineering assessment. However, they do use some element of con- tinua even though they may account for many different components. Fibre struc- tures on the other hand contain typically many million components, and it is not really appropriate to use such packages. This text considers these assemblies, the various sub-assemblies and their interaction behaviour. A notable inclusion is the frictionbetweenthecomponents,andthevariousmodesthroughwhichfrictionis applicable. This text is solely focused on linear structures where the effect and consider- ation of the third dimension, length, is somewhat secondary to the primary dimensions, diameter and angular disposition. It is essentially a quasi-static investigation, although there is some small reference to general dynamics. Finally there are other types of fibre assemblies, areas which include textiles and cloth, and volumetric assemblies which typically include bulk assemblies; these are not considered here. Acknowledgments The author would like to thank the various colleagues at UMIST and TTI for various suggestions and inspiration that have surfaced over the years of contact. The author is also indebted to Mr. Gerry Needham for the preparation of various illustrations that are used in this text. vii Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Outline of Following Chapters . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Closure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Fibre Geometry and Fibre Mechanics. . . . . . . . . . . . . . . . . . . . . . 5 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Fibre Dimensionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 Fibre Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3.1 Fibre Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3.2 Fibre Weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3.3 Fibre Material Stress–Strain Behaviour . . . . . . . . . . . . . 10 2.4 Primary Deformation, Extension . . . . . . . . . . . . . . . . . . . . . . . 13 2.4.1 Polynomial Approximations. . . . . . . . . . . . . . . . . . . . . 14 2.4.2 Strain Energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.5 Anelasticity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.5.1 Viscoelasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.5.2 Linear Viscoelasticity . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.5.3 Nonlinear Viscoelasticity. . . . . . . . . . . . . . . . . . . . . . . 20 2.5.4 Large Strain Rate Modelling for Polymer Fibres. . . . . . . 23 2.5.5 Hysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.5.6 Creep and Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.6 Secondary Deformations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.6.1 Fibre Torsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.6.2 Fibre Flexure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.7 Strain Energy or the Energy of Deformation. . . . . . . . . . . . . . . 35 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3 Component Path Geometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.1 Curves in Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.1.1 General Path Geometry . . . . . . . . . . . . . . . . . . . . . . . . 37 3.1.2 Geometry Preserving Structures . . . . . . . . . . . . . . . . . . 39 ix x Contents 3.2 The Helical Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.2.1 The Helix Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.2.2 Extensional and Twist Deformations. . . . . . . . . . . . . . . 41 3.2.3 Flexure in Helical Components. . . . . . . . . . . . . . . . . . . 42 3.2.4 The Partitioning of Strain Energy. . . . . . . . . . . . . . . . . 43 Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4 Transversely Continuous Structures. . . . . . . . . . . . . . . . . . . . . . . 47 4.1 Geometrically Preserving Structures. . . . . . . . . . . . . . . . . . . . . 48 4.1.1 The Assembly of Transversely Continuous Structures. . . 48 4.1.2 The Straining of Transversely Continuous Structures. . . . 50 4.1.3 The Loading of Transversely Continuous Structures . . . . 53 4.1.4 An Analytic Result for Strain Energy . . . . . . . . . . . . . . 53 4.1.5 The Principle of Virtual Work for Transversely Continuous Structures . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.1.6 The Progressive Failure of Transversely Continuous Structures . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.2 Parallel Structures, Variability. . . . . . . . . . . . . . . . . . . . . . . . . 57 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5 Hierarchical Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5.1 Component Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5.2 Normalisation of Hierarchical Structures . . . . . . . . . . . . . . . . . 64 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 6 Transversely Discrete Structures . . . . . . . . . . . . . . . . . . . . . . . . . 67 6.1 Numerous Small Component Structures. . . . . . . . . . . . . . . . . . 67 6.1.1 The Hierarchical Tree . . . . . . . . . . . . . . . . . . . . . . . . . 68 6.1.2 The Assembly of Transversely Discrete Structures . . . . . 69 6.1.3 The Straining of Transversely Discrete Structures. . . . . . 70 6.1.4 The Principle of Virtual Work for Transversely Discrete Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 6.2 Component Geometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.2.1 The Assembly of Large Component Structures. . . . . . . . 73 6.2.2 The Loading of Large Component Structures. . . . . . . . . 77 6.3 Tubular Woven Geometries: Braiding and Plaits. . . . . . . . . . . . 78 6.3.1 The Geometry of Braids and Plaits. . . . . . . . . . . . . . . . 80 6.4 Bending of Helical Structures. . . . . . . . . . . . . . . . . . . . . . . . . 83 6.4.1 General Kinematics Associated with Bent Structures. . . . 83 6.4.2 No Slip (Friction) Bending. . . . . . . . . . . . . . . . . . . . . . 84 6.4.3 Geodesic (No Friction) Bending. . . . . . . . . . . . . . . . . . 85 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Contents xi 7 Contact Force and Friction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 7.1 Contact Forces and Pressures . . . . . . . . . . . . . . . . . . . . . . . . . 92 7.2 Friction and Relative Slip: Inter Modes . . . . . . . . . . . . . . . . . . 94 7.2.1 Mode 1: Axial Slip. . . . . . . . . . . . . . . . . . . . . . . . . . . 95 7.2.2 Mode 2: Component Twist. . . . . . . . . . . . . . . . . . . . . . 98 7.2.3 Mode 3: Scissoring. . . . . . . . . . . . . . . . . . . . . . . . . . . 100 7.2.4 Mode 4: Sawing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 7.2.5 Transition Between the Sliding Modes . . . . . . . . . . . . . 105 7.3 Component Transverse Deformation and Set: Intra Modes. . . . . 106 7.3.1 Dilation Measure, N and Packing Factor P . . . . . . . . . . 107 f 7.3.2 Distortion Measure, X. . . . . . . . . . . . . . . . . . . . . . . . . 108 7.3.3 The Set in Distortion and Dilation . . . . . . . . . . . . . . . . 108 7.3.4 The Energy of Dilation and Distortion. . . . . . . . . . . . . . 111 7.3.5 The Continuum Model. . . . . . . . . . . . . . . . . . . . . . . . . 112 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 8 Component Wear, Life and Heating. . . . . . . . . . . . . . . . . . . . . . . 115 8.1 The Work Done by Relative Motion Between Components . . . . 115 8.2 The Friction Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 8.3 Wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 8.4 Steady State or Equilibrium Temperature, Surface Heat Convection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 About the Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.