DOCTORALTHESISINPHYSICS The magnetic shape memory alloy Ni-Mn-Sn in thin films AlexanderAuge DepartmentofPhysics UniversityofBielefeld July2012 Declaration Iwrotethisthesisbymyselfandusednonebuttheindicatedresources. Text andfigureswerepartlytakenfromcorrespondingpublications,whichoriginate directlyfromthiswork. Bielefeld,July2012 (AlexanderAuge) Reviewers Prof. Dr. AndreasHu¨tten Prof. Dr. ThomasHuser Dateofsubmission: July2012 Dedicatedtothecurious Publications [1] A.Auge,A.Weddemann,F.Wittbracht,A.Hu¨tten: Magneticratchetfor biotechnologicalapplications;Appl.Phys.Lett.94,183507(2009) [2] A. Weddemann, F. Wittbracht, A. Auge, A. Hu¨tten: A hydrodynamic switch: Microfluidicseparationsystemformagneticbeads;Appl.Phys. Lett.94,173501(2009) [3] C.Albon,A.Weddemann,A.Auge,A.Hu¨tten: Tunnelingmagnetoresis- tancesensorsforhighresolutiveparticledetection;Appl.Phys.Lett.95, 023101(2009) [4] C. Albon, A. Weddemann, A. Auge, D. Meißner, K. Rott, P. Jutzi, A. Hu¨tten:Numbersensitivedetectionanddirectimagingofdipolarcoupled magneticnanoparticlesbytunnelmagnetoresistivesensors;Appl.Phys. Lett.95,163106(2009) [5] A. Weddemann, A. Auge, C. Albon, F. Wittbracht, A. Hu¨tten: On the resolutionlimitsoftunnelmagnetoresistancesensorsforparticledetection; NewJ.Phys.11113027(2009) [6] A.Weddemann,A.Auge,D.Kappe,F.Wittbracht,A.Hu¨tten: Dynamic simulationsofthedipolardrivendemagnetizationprocessofmagnetic multi-corenanoparticles;J.Magn.Magn.Mater.322,643-646(2009) [7] A.Auge,A.Weddemann,B.Vogel,F.Wittbracht,A.Hu¨tten: Alevelset based approach for modeling oxidation processes of ligand stabilized metallicnanoparticles;Appl.Phys.Lett.96,093111(2010) [8] A. Weddemann, B. Eickenberg, F. Wittbracht, A. Auge, A. Hu¨tten: A combinedreaction-separationlab-on-a-chipdeviceforlowPecletnumber applications;J.Appl.Phys.106,024510(2009) [9] A.Weddemann,F.Wittbracht,A.Auge,A.Hu¨tten: Positioningsystemfor particlesinmicrofluidicstructures;MicrofluidNanofluid7,849-855(2009) [10] A. Weddemann, A. Auge, C. Albon, F. Wittbracht, A. Hu¨tten: Toward the magnetoresistive detection of single magnetic nanoparticles: New strategiesforparticledetectionbyadjustmentofsensorshape; J.Appl. Phys.107,104314(2010) [11] O.Schebaum,D.Drewello,A.Auge,G.Reiss,A.Thomas: Tunnelmag- netoresistanceinalumina,magnesiaandcompositetunnelbarriermag- netictunneljunctions;J.Magn.Magn.Mater.323,1525-1528(2011)DOI: 10.1016/j.jmmm.2011.01.011 [12] A.Weddemann,F.Wittbracht,A.Auge,A.Hu¨tten:Particleflowcontrolby induceddipolarinteractionofsuperparamagneticmicrobeads;Microfluid Nanofluid10,459-463(2011) [13] A.Weddemann,C.Albon,A.Auge,P.Hedwig,D.Akemeier,K.Rott,D. Meißner,P.Jutzi,A.Hu¨tten: Howtodesignmagneto-basedtotalanalysis systemsforbiomedicalapplications;Biosensors&Bioelectronics26,1152- 1163(2010) [14] I.Ennen,S.Lo¨ffler,C.Ku¨bel,D.Wang,A.Auge,A.Hu¨tten,P.Schattschnei- der: Site-specificchiralityinmagnetictransitions;J.Magn.Magn.Mater. 324,2723–2726(2012) [15] A.Auge,N.Teichert,M.Meinert,G.Reiss,A.Hu¨tten,E.Yu¨zu¨ak,I.Dincer, Y.Elerman,I.Ennen,andP.Schattschneider: Thicknessdependenceof the martensitic transformation, magnetism, and magnetoresistance in epitaxialNi-Mn-Snultrathinfilms,Phys.Rev.B85,214118(2012) Conferences [1] A.Auge,T.Weiß,D.Akemeier,F.Wittbracht,A.Weddemann,A.Hu¨tten: Micrototalanalysissystem: Acombinationofamagneticratchetwithgi- antmagnetoresistancesensors;Biosensors2010,Edinburgh,GreatBritain [2] A.Auge,A.Weddemann,B.Vogel,F.WittbrachtandA.Hu¨tten:Oxidation ofmetallicnanoparticles;ComsolConference2009,Mailand,Italy [3] A.Auge,N.Teichert,M.Meinert,I.Ennen,I.Dincer,E.Yuzuak,Y.Eler- man, A. Hu¨tten: Martensitic transformation and magnetoresistance in off-stoichiometricNi-Mn-Snthinfilms;Intermag2011,Taipeh,Taiwan [4] A.Auge,N.Teichert,M.Meinert,I.Ennen,I.Dincer,E.Yuzuak,Y.Eler- man,I.Ennen,P.Schattschneider,A.Hu¨tten: Martensitictransformation andelectronenergylossmagneticchiraldichroisminoff-stoichiometric Ni-Mn-Snthinfilms;APMAS2011,Antalya,Turkey [5] A.Auge,N.Teichert,A.Hu¨tten: PhaseFieldSimulationsofMartensitic TransformationinThinFilms;DPG2012,Berlin,Germany Contents Publications iv Conferences vi Contents vii 1 Introduction 1 2 FundamentalBasicsofMartensiticTransformations 5 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 PhaseCompatibility . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3 MartensiticTransformationinrealcrystalsandthinfilms . . . . 16 2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3 Analyticalandpreparationtools 20 3.1 Thinfilmdeposition . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2 X-RayDiffractionandReflectometry . . . . . . . . . . . . . . . . 21 3.3 ChemicalcompositionanalysisbyX-RayFluorescence . . . . . 23 3.4 Electrictransportmeasurements . . . . . . . . . . . . . . . . . . 23 3.5 MagneticMeasurements . . . . . . . . . . . . . . . . . . . . . . . 23 4 PhaseFieldSimulations 24 4.1 Phasefieldmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.3 Simulationsofthinfilms-Geometry,approximationsandsolution 28 4.4 SummaryandDiscussion . . . . . . . . . . . . . . . . . . . . . . 35 5 Ni-Mn-Sninthinfilms 37 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.2 Structureintheaustenitephase: thinfilmquality. . . . . . . . . 41 5.3 Martensiticstructure . . . . . . . . . . . . . . . . . . . . . . . . . 47 5.4 Magnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.5 Electricaltransport . . . . . . . . . . . . . . . . . . . . . . . . . . 68 5.6 Analysisofthemartensitictransformation. . . . . . . . . . . . . 75 5.7 Originsofthetransformationbehavior . . . . . . . . . . . . . . . 79 5.8 Magnetoresistance . . . . . . . . . . . . . . . . . . . . . . . . . . 87 6 SummaryandConclusions 95 7 Outlook 98 Bibliography 99 8 Danksagung 111 1 Introduction Thefunctionalbehaviorofshapememoryalloysasusedfor,e.g.,actuatorsand switchingdevices,isrelatedtothestructuralinstabilityknownasmartensitic transformation (MT). It is defined as a displacive, diffusionless first-order solid to solid phase transformation from the high temperature austenite to thelowtemperaturemartensitephase. Ferromagneticshapememoryalloys (FSMA)arematerialsthatcombinetheshapememoryeffectandferromagnetic behavior. TheHeusleralloysNi MnGaandoffstoichiometricNi Mn Z , 2 50 25+x 25-x whereZ=In,Sn,Sb,areimportantexamplesofFSMAduetotheirinteresting physical phenomena such as large magnetic field induced strain,[1] giant magnetocaloriceffects,[2]andgiantmagnetoresistance.[3] Forapplicationssuchasactuators,magneticcoolingandhybridsystems, thinfilmsareoftenadvantageousormandatory. Itwasshownthatshapemem- oryalloysinthinfilmscanbeusedasmicrofluidicvalves,micropumpsand microgrippers.[4]Formagneticcoolingdevices,thinfilmsoffertheadvantage ofahighsurfacetovolumeratio. Thisallowsafastheattransfer. AgeneralknowledgeofthethinfilminfluenceontheMTisrequiredfor alltheseapplications. Theoreticalandexperimentalstudieshaveshown,that thetransformationbehavioraswellasthemicrostructurechangessignificantly inthinfilms.[5,6]Ininvestigationsonthetransformationbehavior,abroader transitionandachangeinthetransitiontemperatureshasbeenfound. The broadeningofthetransitionaswellasareducedtransitiontemperaturecanbe causedbysubstrateconstraints,[7]confinementofthenucleusandsizescale effectsonthethemeanfreepathoftransformationdislocations.[6]Anincrease inthetransitiontemperaturecanbeattributedtostressinducedbythelattice mismatchbetweensubstrateandthinfilm.[5] 1 1. INTRODUCTION Thedetailsofthemicrostructuredependstronglyonmaterialproperties andexternalinfluences. Inthinfilmsthesubstrateaswellasinducedtexture playamajorrole. Thedegreeandkindoftexturehasalargeinfluenceonthe allowedvariants.[8]Arigidsubstrateleadstosymmetrybreakingeffectsin thesensethatnotallorientationsoftheaustenite-martensiteinterfacesallow coarseningofnanotwinnedmartensitetomacroscopicnonmodulatedvariants. [9] Systematic studies on the influence of the film thickness on the MT are sparseinliterature. EpitaxialNi-Mn-Gafilmshavebeeninvestigatedinthe thicknessrangeof150nmto500nmwithvaryingcomposition.[9]Anincreas- inginfluenceofthesubstratewithdecreasingthicknesshasbeenfounddue tostressinducedmartensiteattheinterface. PolycrystallineNi-Mn-Snfilms grownonSihavebeeninvestigatedinthethicknessrangefrom120nmupto 2.5µmbyVishnoietal. [10]TheyfoundasuppressionoftheMTbelow410nm andanincreasingtransitiontemperaturewithincreasingfilmthickness. Most otherstudiesontheMTinthinfilmsinvestigatedasinglefilmthicknessinthe rangeofseveral100nmuptoseveral µm. [5,11,12,13,14] Thisworkhastheoreticalaswellasexperimentalaspects. Atfirst,phase field simulations are carried out for the well known model system NiAl in thin films. This allows us to study the influence of a rigid substrate on the martensitictransformationandtheinvolvedenergytermsfordifferentfilm thicknesses. Thesecondpartofthisthesisinvolvesexperimentalstudiesof Ni-Mn-Sn. ThisisaHeusleralloywithaverylowlatticemismatchof0.7% withrespecttoMgO.[15]Thus,alowstressinfluencecanbeexpectedandthis systemshouldbeanidealcandidatetostudytheinfluenceofconfinementand sizescaleeffects. Twosampleserieswithdifferentcompositioninthethickness rangeof200nmdownto10nmareinvestigatedusingtemperaturedependent X-raydiffraction,magnetizationandresistivitymeasurements. Thisthesisisorganizedasfollows: 1. Theoretical Basics: The martensitic transformation is introduced. The basicsofmartensiticstructures,theinvolvedenergytermsandtheorigin ofthemicrostructureisexplained. Theinfluenceofphasecompatibility, sample quality and the thin film geometry on the phase transition is introduced. 2
Description: