ebook img

The Large Sieve and its Applications: Arithmetic Geometry, Random Walks and Discrete Groups PDF

317 Pages·2007·1.34 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Large Sieve and its Applications: Arithmetic Geometry, Random Walks and Discrete Groups

This page intentionally left blank CAMBRIDGETRACTSINMATHEMATICS GeneralEditors B. BOLLOBÁS, W. FULTON, A. KATOK, F. KIRWAN, P. SARNAK, B. SIMON, B. TOTARO 175 TheLargeSieveanditsApplications: ArithmeticGeometry,RandomWalksandDiscreteGroups The Large Sieve and its Applications Arithmetic Geometry, Random Walks and Discrete Groups E. KOWALSKI SwissFederalInstituteofTechnology(ETH),Zürich CAMBRIDGEUNIVERSITYPRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press The Edinburgh Building, Cambridge CB28RU, UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521888516 © E. Kowalski 2008 This publication is in copyright. Subject to statutory exception and to the provision of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published in print format 2008 ISBN-13 978-0-511-39887-2 eBook (EBL) ISBN-13 978-0-521-88851-6 hardback Cambridge University Press has no responsibility for the persistence or accuracy of urls for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. PourlessoixanteansdeJean–MarcDeshouillers Contents Preface pagexi Acknowledgments xvi Prerequisitesandnotation xvii 1 Introduction 1 1.1 Presentation 1 1.2 Somenewapplicationsofthelargesieve 4 2 Theprincipleofthelargesieve 8 2.1 Notationandterminology 8 2.2 Thelargesieveinequality 9 2.3 Dualityand‘exponentialsums’ 18 2.4 Thedualsieve 22 2.5 Generalcommentsonthelargesieveinequality 25 3 Groupandconjugacysieves 32 3.1 Conjugacysieves 32 3.2 Groupsieves 34 3.3 Cosetsieves 36 3.4 Exponentialsumsandequidistributionforgroupsieves 40 3.5 Self-containedstatements 42 4 Elementaryandclassicalexamples 45 4.1 Theinclusion-exclusionprinciple 45 4.2 Theclassicallargesieve 48 4.3 Themultiplicativelargesieveinequality 57 4.4 Theellipticsieve 59 4.5 Otherexamples 67 vii viii Contents 5 Degreesof representations of finitegroups 70 5.1 Introduction 70 5.2 GroupsofLietypewithconnectedcentres 72 5.3 Examples 82 5.4 Somegroupswithdisconnectedcentres 83 6 Probabilisticsieves 87 6.1 Probabilisticsieveswithintegers 87 6.2 Somepropertiesofrandomfinitelypresentedgroups 94 7 Sievingindiscretegroups 101 7.1 Introduction 101 7.2 RandomwalksindiscretegroupswithProperty(τ) 105 7.3 Applicationstoarithmeticgroups 113 7.4 ThecasesofSL(2)andSp(4) 119 7.5 Arithmeticapplications 127 7.6 Geometricapplications 132 7.7 Explicitboundsandarithmetictransitions 145 7.8 Othergroups 151 8 SievingforFrobeniusoverfinitefields 154 8.1 Aproblemaboutzetafunctionsofcurvesoverfinite fields 155 8.2 TheformalsettingofthesieveforFrobenius 160 8.3 Boundsforsieveexponentialsums 164 8.4 EstimatesforsumsofBettinumbers 168 8.5 Boundsforthelargesieveconstants 171 8.6 ApplicationtoChavdarov’sproblem 175 8.7 Remarksonmonodromygroups 187 8.8 Alastapplication 193 AppendixA Smallsieves 197 A.1 Generalresults 197 A.2 Anapplication 201 AppendixB Localdensitycomputationsoverfinitefields 204 B.1 Densityofcycletypesforpolynomialsoverfinitefields 204 B.2 Somematrixdensitiesoverfinitefields 210 B.3 Othertechniques 218

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.